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Outline

● Neuroimaging in 5'
● Some learning problems in neuroimaging:

● Medical diagnosis & evaluation of risk factors

● Study of between subject-variability

● Brain reading

● Brain connectivity mapping

● Common technical challenges

Handbook of Functional MRI Data Analysis

 Russell A. Poldrack,Jeanette Mumford,Thomas Nichols
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NeuroImaging: modalities and aims

● 'Functional' 
(time resolved) 
modalities: 
fMRI, EEG, 
MEG

● vs 'anatomical' 
(spatially 
resolved) 
modalities: T1-
MRI, DW-MRI
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Neuroimaging modalities: T1 MRI
 T1 MRI yields

 Iconic (voxel-based) 
statistics

− density of grey matter 
(voxel-based 
morphometry)

− Cortical thickness
− Gyrification ratio

 Landmarks-based statistics
− Sulcus 

shape/orientation
 102 to 106 variables

 (1mm)3

WM

GM

CSF
Skull

sulcus
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Neuroimaging modalities: DW-MRI

 Diffusion MRI: measurement of 
water diffusion in all directions in 
the white matter

 Resolution: (2mm)3, 30-60 
directions

 Yields the local direction of fiber 
bundles that connect brain 
regions

 fibers/bundles can be 
reconstructed through 
tractography algorithms

 Statistical measurement on 
bundles (counting, fractional 
anisotropy, direction)
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NeuroImaging modalities: fMRI

 BOLD signal: measures blood 
oxygenation in regions where 
synaptic activity occurs

− Used to detect 
functionally specialized 
regions 

− But indirect measurement

− Not a true quantitative 
measurement

 Can also be used to characterize 
network structure from brain 
signals

 102 to 106 observations

 Resolution (2-3mm)3, TR = 2-3s
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Neuroimaging data pre-processing

Space-time 
relaignment

Spatial 
normalization

GLM 
analysis

Experimental 
paradigm and 
contrasts

Raw 
fMRI 
data

Hemodynamic 
reponse function

Activation parameters
Statistical Parametric 
Maps

Noise model

● Data depend on various acquisition parameters (TR, TE, resolution, FOV...)
● But also on multiple preprocessing steps, 

● which are standardized, 
● but there is room for optimization
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NeuroImaging: modalities and aims

● Provide some biomarkers for diagnostic/prognostic, study 
of risk factors for various brain diseases

● Psychiatric diseases
● Neuro-degenerative diseases, 
● Brain lesions (strokes...)

● Understand brain organization and related factors: brain 
mapping, connectivity, architecture, development, aging, 
relation to behavior, relation to genetics

● Study chronometry of brain processes (MEG)
● Build brain computer interfaces (EEG)
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Outline

● Neuroimaging in 5'
● Some learning problems in neuroimaging:

● Medical diagnosis & evaluation of risk factors

● Study of between subject-variability

● Brain reading

● Brain connectivity mapping

● Common technical challenges
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 learning  in Neuroimaging: Medical 
diagnosis and evaluation of risk factors

● Rationale: brain images provide quantitative 
measurements of brain organization that reflect brain 
disease, abnormalities etc.

● Cortical thickness (T1-MRI)
● Brain shape/folding (T1-MRI)
● Brain anatomical connections (DW-MRI)
● Neural activation (BOLD) 
● Vascular structure/density  (BOLD, ASL)

● Different approaches for population comparison: 
classical statistics, population discrimination, outlier detection

Alzheimer in  
VBM, [Klöppel et 
al., Brain 2008]
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Diagnosis based on medical images

Neuroimaging 
data

Brain descriptors

Classification/
Regression / 
outlier detection

Accuracy of the prediction ?
Discriminating information ?

X-MRI, PET,...

- local (gyrification ratio on 
anatomical image)
- global (functional integration 
of brain systems)
- more meaningful than raw 
data + denoising

Fundamental 
difficulty:
Necessity to 
coregister brain 
anatomically but 
risk of  masking 
brain shape 
differences
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Study of between-subject variability

● Brain diseases are extreme case of normal 
variability

● Between-subject variability is a prominent 
effect in neuroimaging: 

● hard to characterize as such
● how much of it can be explained using other 

data ?

● Data easier to acquire on normal populations
● Confrontation to behavioral data
● Confrontation to genetic data

● Perspective of individualized treatments
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Study of between-subject variability

● The major challenge here is to discover statistical associations 
between complex, high-dimensional variables (regression)

● Frequently handled as unsupervised problems: describe the density of 
the data based on observations (manifold learning, mixture modeling)

p( )|

imagephenotype

Image→Phenotype

p( )|

Gene→Image

geneticimage

Imaging as an intermediate (endo)phenotype
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“Brain reading”

● Definition: Use of functional neuroimaging data to 
infer the subject's behaviour – typically the brain 
response related to a certain stimulus

● Similar to BCI -to some extent- 
● without time constraints
● More emphasis on model correctness

● Popular due to its sensitivity to detect small-
amplitude but distributed brain responses

● Rationale: population coding
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Brain reading: population coding

● Not a unique kind of pattern for 
the spatial organization of the 
neural code.
● This is further confounded by 
between-subject variability

 Different spatial models of the functional 
organization of neural networks
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Brain reading / Reverse inference

Aims at predicting a cognitive variable → decoding brain activity
[Dehaene et al. 1998, Cox et al. 2003]
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Brain reading / open issues

Do we want this....

… or that ?

### Compute the prediction accuracy for the different folds (i.e. session)
cv_scores = cross_val_score(anova_svc, X, y, cv=cv, n_jobs=-1,
                            verbose=1, iid=True)

### Return the corresponding mean prediction accuracy
classification_accuracy = np.sum(cv_scores) / float(n_samples)
print "Classification accuracy: %f" % classification_accuracy, \
>>> print "Classification accuracy: %f" % classification_accuracy, \
    " / Chance level: %f" % (1. / n_conditions)
Classification accuracy: 0.744213  / Chance level: 0.125000



November 8th, 2011 18MLNI Workshop

Brain reading/open issues
● a classifier trained to 
discriminate left versus right 
saccades can also decode mental 
arithmetics:

● left saccade  subtraction

● right saccade  addition

● This generalization occurs only 
when based on two regions of the 
parietal cortex

● This shows that the same neural 
populations are involved in ocular 
saccades and arithmetics

[Knops et al.,  science 2009]
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Functional connectivity mapping

● Definition: consists in deriving a quantitative measure of 
brain networks integration based on functional 
neuroimaging observation

● Rationale
● Popularity of resting-state fMRI.
● Model-driven approach (SEM, DCM): restrictive 

hypotheses 

● Learning problems
● Segment regions based on connectivity information 

(common to many neuroimaging problems)
● Inference of connectivity models



November 8th, 2011 20MLNI Workshop

Learning in FCM (1)

● Learn a spatial model (atlas) from 
the resting state data 

● ICA, clustering provide 
little guarantees on the 
result

● Dictionary learning can be 
used instead

The population-level model adapts 
to individual configurations
The population-level model adapts 
to individual configurations

Note: Atlas learning is not tied to Functional Connectivity Mapping, but is 
important in different contexts (parcellations) 

[Varoquaux et al. IPMI 2011]
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Learning in FCM (2)

● Next: Given a set of regions, quantify 
properly their interactions/integration of the 
underlying networks

● Threshold correlation graph → 
graph statistics, graph embedding

● Learn covariance model between 
the set of regions (partial 
correlations)

● Do  statistical inference on these objects
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Outline

● Neuroimaging in 5'
● Some learning problems in neuroimaging:

● Medical diagnosis & evaluation of risk factors

● Study of between subject-variability

● Brain reading

● Brain connectivity mapping

● Common technical challenges
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Technical challenges in MLNI

● Low SNR in the data
● Only a fraction of the data is modeled (BOLD)
● Presence of structured noise (noise is not i.i.d. 

Gaussian !) + non-stationarity in time and space
● Few salient structures (resting-state fMRI...)

● Size of the data
● 104 to 106 voxels in most settings
● Compared to 10 to 102 samples available

● Related to the particular learning problems
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Technical challenges in MLNI
● Diagnostic/classification problems

●  Needs accuracy mostly (+ robustness)
● Suffers from curse of dimensionality, but this is well 

addressed in the literature 

[generic approaches perform well]
● But: not the main aim of most neuroimaging studies

­ Need a large set of tools to be 
compared against each other
- Need to take into account some 
priors on the data/true model 
(smoothness, sparsity)
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Technical challenges in MLNI

● Recovery: retrieve the true model that accounts for the data
● This is the main topic of all neuroimaging / brain mapping / 

decoding literature.
● Suffers much more from feature dimensionality and 

correlation
● Virtually in-addressed/unseen so far

1. learn EN model for pain perception 
rating using first 120 TRs for training and 
next 120 TRs for testing.
2. Find ‘best-predicting’ 1000 voxels 
using EN, delete them, find next 1000 
best-predicting, etc.
Does the predictive accuracy degrade 
sharply?
Surprisingly, the answer is ‘NO’

I. Rish, HBM 2011
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Technical challenges in MLNI

● Unsupervised problems: find the 
right model that accounts for the data, 
without making in prediction (number 
PCA components, clusters etc.)

● Suffers from data correlation, lack of 
salient structure, 

● Very difficult (no happy curve 
around)

Likelihood of left out data in a 3-fold 
stratified cross-validation on resting-
state fMRI data
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This is not a conclusion

● To me Neuroimaging methodologists need

● Implementations of various ML tools

– Only the easily available tools are used; this is part of 
the success of SVM

– Open-source, tested, documented ;-)
● Guidelines on cross-validation (people tend to use leave-one-

out without further thinking)
● Steady warning against the danger of overfitting (the more 

complex the method, the most likely overfit occurs)

– Working on only one dataset is one type of over-fitting
● Understand the limitations of current methods regarding 

recovery and unsupervised problems.
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