### Machine learning for Neuroimaging: an introduction

Bertrand Thirion, INRIA Saclay-Île-de-France, Parietal team http://parietal.saclay.inria.fr bertrand.thirion@inria.fr









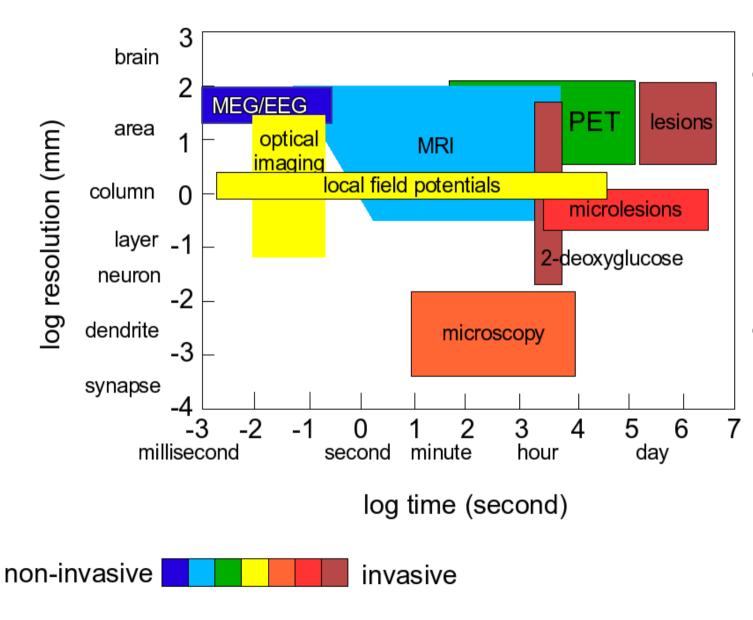
# Outline

- Neuroimaging in 5'
- Some learning problems in neuroimaging:
  - Medical diagnosis & evaluation of risk factors
  - Study of between subject-variability
  - Brain reading
  - Brain connectivity mapping
- Common technical challenges

### Handbook of Functional MRI Data Analysis

Russell A. Poldrack, Jeanette Mumford, Thomas Nichols

### NeuroImaging: modalities and aims

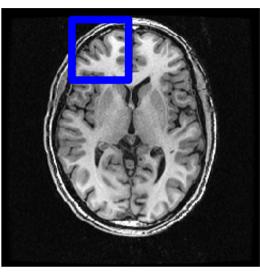


- 'Functional'

   (time resolved)
   modalities:
   fMRI, EEG,
   MEG
- vs 'anatomical' (spatially resolved) modalities: T1-MRI, DW-MRI

# Neuroimaging modalities: T1 MRI

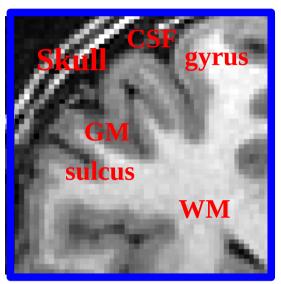
- T1 MRI yields
- Iconic (voxel-based) statistics
  - density of grey matter (voxel-based morphometry)
  - Cortical thickness
  - Gyrification ratio
- Landmarks-based statistics
  - Sulcus shape/orientation
- 10<sup>2</sup> to 10<sup>6</sup> variables
- $(1mm)^3$

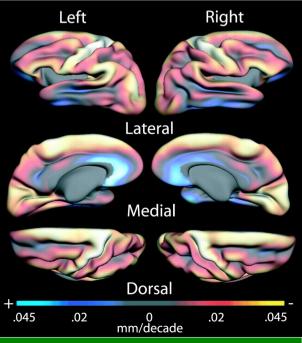


Central sulcus

anterior parts of the right inferior temporal sulcus

rior pre-central sulcus

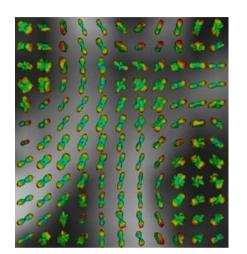


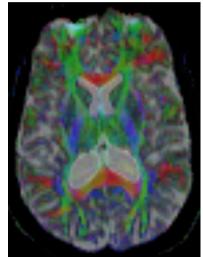


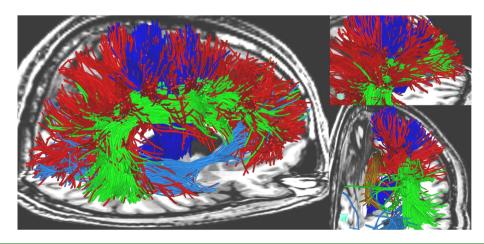
### November 8<sup>th</sup>, 2011

### Neuroimaging modalities: DW-MRI

- Diffusion MRI: measurement of water diffusion in all directions in the white matter
- Resolution: (2mm)<sup>3</sup>, 30-60 directions
- Yields the local direction of fiber bundles that connect brain regions
- *fibers/bundles* can be reconstructed through tractography algorithms
- Statistical measurement on bundles (counting, fractional anisotropy, direction)

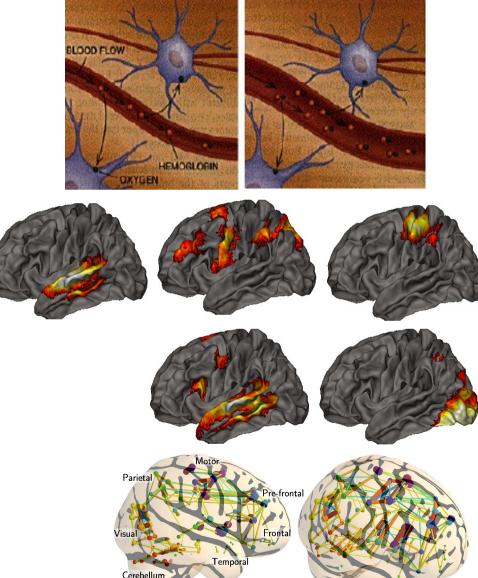






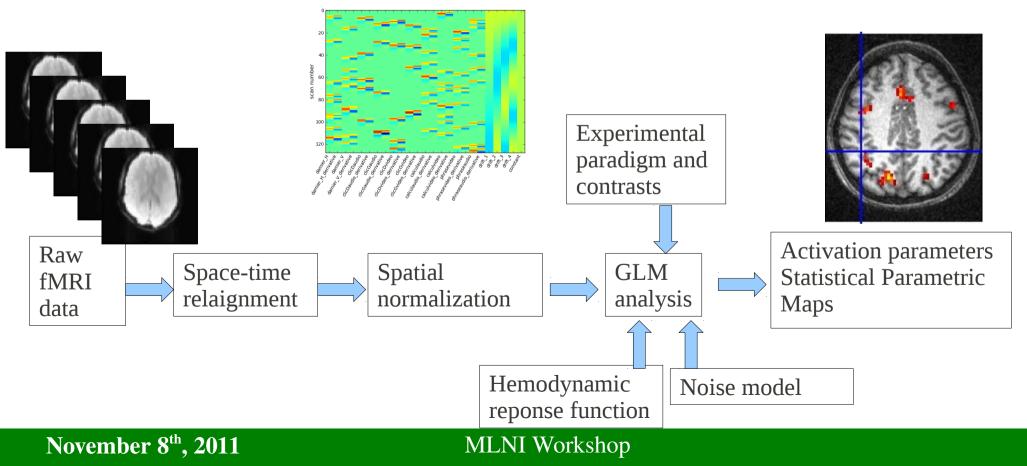
# NeuroImaging modalities: fMRI

- BOLD signal: measures blood oxygenation in regions where synaptic activity occurs
  - Used to detect
     functionally specialized
     regions
  - But indirect measurement
  - Not a true quantitative measurement
- Can also be used to characterize network structure from brain signals
- 10<sup>2</sup> to 10<sup>6</sup> observations
- Resolution (2-3mm)<sup>3</sup>, TR = 2-3s
   November 8<sup>th</sup>, 2011 MLNI Workshop



# Neuroimaging data pre-processing

- Data depend on various acquisition parameters (TR, TE, resolution, FOV...)
- But also on multiple preprocessing steps,
  - which are standardized,
  - but there is room for optimization



# NeuroImaging: modalities and aims

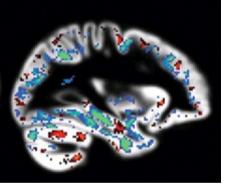
- Provide some biomarkers for diagnostic/prognostic, study of risk factors for various brain diseases
  - Psychiatric diseases
  - Neuro-degenerative diseases,
  - Brain lesions (strokes...)
- Understand brain organization and related factors: brain mapping, connectivity, architecture, development, aging, relation to behavior, relation to genetics
- Study chronometry of brain processes (MEG)
- Build brain computer interfaces (EEG)

### Outline

- Neuroimaging in 5'
- Some learning problems in neuroimaging:
  - Medical diagnosis & evaluation of risk factors
  - Study of between subject-variability
  - Brain reading
  - Brain connectivity mapping
- Common technical challenges

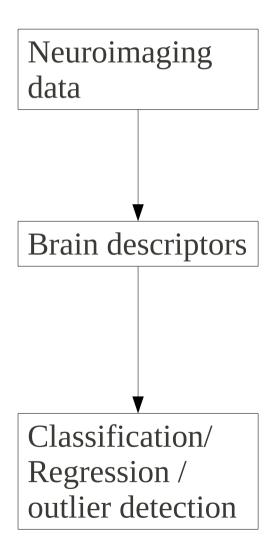
# learning in Neuroimaging: Medical diagnosis and evaluation of risk factors

- Rationale: brain images provide quantitative measurements of brain organization that reflect brain disease, abnormalities etc.
  - Cortical thickness (T1-MRI)
  - Brain shape/folding (T1-MRI)
  - Brain anatomical connections (DW-MRI)
  - Neural activation (BOLD)
  - Vascular structure/density (BOLD, ASL)
- Different approaches for population comparison: classical statistics, population discrimination, outlier detection



Alzheimer in VBM, [Klöppel et al., *Brain 2008]* 

### Diagnosis based on medical images



X-MRI, PET,...

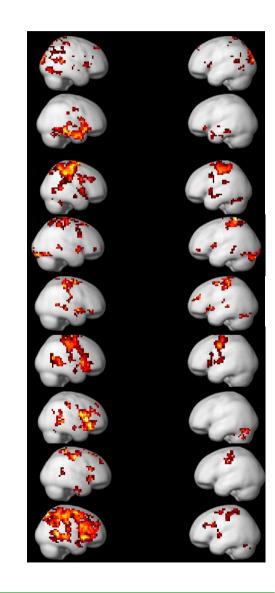
- local (gyrification ratio on anatomical image)
- global (functional integration of brain systems)
- more meaningful than raw data + denoising

Fundamental difficulty: Necessity to **coregister** brain anatomically but risk of masking brain shape differences

Accuracy of the prediction ? Discriminating information ?

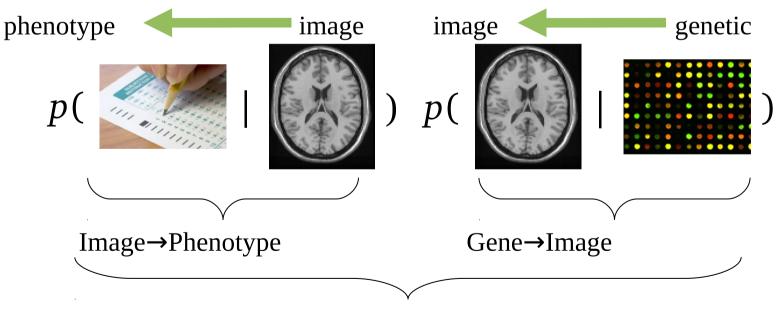
# Study of between-subject variability

- Brain diseases are extreme case of *normal variability*
- Between-subject variability is a prominent effect in neuroimaging:
  - hard to characterize as such
  - how much of it can be explained using other data ?
- Data easier to acquire on *normal* populations
  - Confrontation to behavioral data
  - Confrontation to genetic data
- Perspective of individualized treatments



# Study of between-subject variability

- The major challenge here is to discover statistical associations between complex, high-dimensional variables (regression)
- Frequently handled as unsupervised problems: describe the density of the data based on observations (manifold learning, mixture modeling)



Imaging as an **intermediate (endo)phenotype** 

November 8<sup>th</sup>, 2011

### "Brain reading"

- Definition: Use of functional neuroimaging data to infer the subject's behaviour typically the brain response related to a certain stimulus
- Similar to BCI -to some extent-
  - without time constraints
  - More emphasis on model correctness
- Popular due to its sensitivity to detect smallamplitude but distributed brain responses
- Rationale: population coding

# Brain reading: population coding

# Different spatial models of the functional organization of neural networks

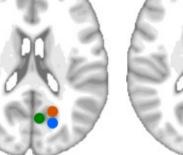
Population

coding

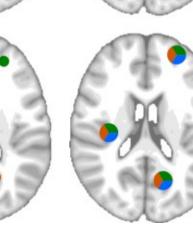
Sparse

coding

Clustered coding



Distributed coding

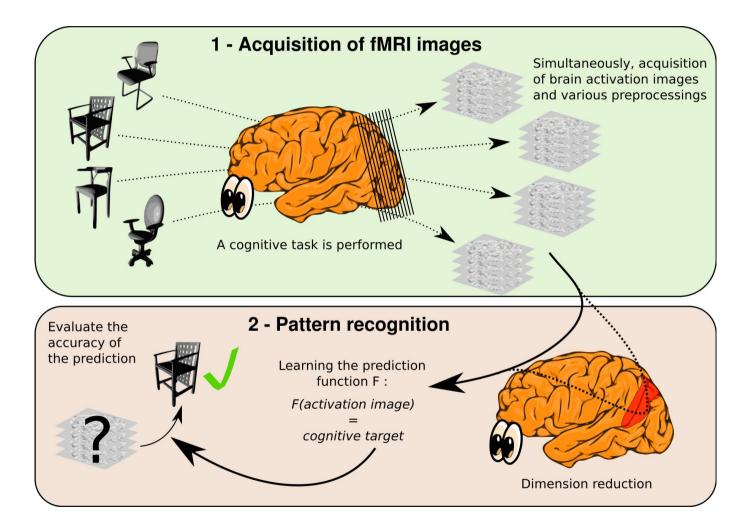


• Not a unique kind of pattern for the spatial organization of the neural code.

• This is further confounded by between-subject variability

### November 8<sup>th</sup>, 2011

### Brain reading / Reverse inference



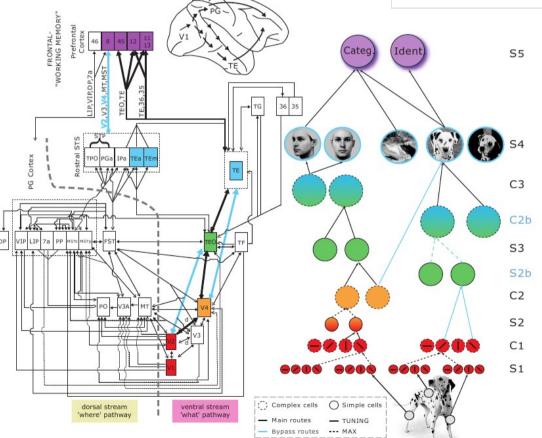
Aims at predicting a cognitive variable  $\rightarrow$  decoding brain activity [Dehaene et al. 1998, Cox et al. 2003]

November 8<sup>th</sup>, 2011

### Brain reading / open issues

### Do we want this....

### Return the corresponding mean prediction accuracy
classification\_accuracy = np.sum(cv\_scores) / float(n\_samples)



### ... or that ?

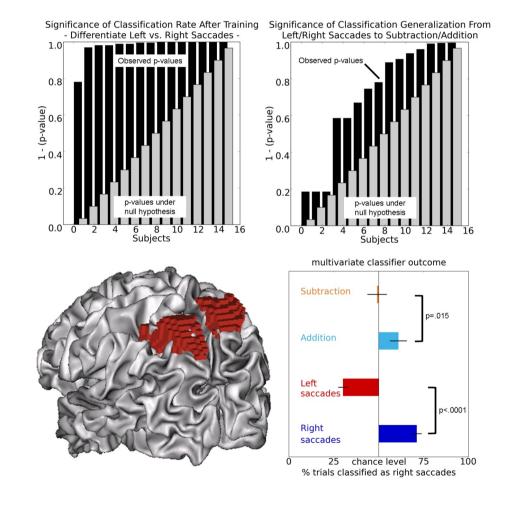
#### November 8<sup>th</sup>, 2011

### Brain reading/open issues

- a classifier trained to discriminate left versus right saccades can also *decode* mental arithmetics:
- left saccade  $\Leftrightarrow$  subtraction
- right saccade  $\Leftrightarrow$  addition
- This generalization occurs only when based on two regions of the parietal cortex
- This shows that the same neural populations are involved in ocular saccades and arithmetics

### [Knops et al., *science* 2009]

November 8<sup>th</sup>, 2011

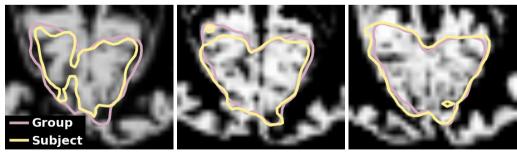


# Functional connectivity mapping

- Definition: consists in deriving a quantitative measure of brain networks integration based on functional neuroimaging observation
- Rationale
  - Popularity of resting-state fMRI.
  - Model-driven approach (SEM, DCM): restrictive hypotheses
- Learning problems
  - Segment regions based on connectivity information (common to many neuroimaging problems)
  - Inference of connectivity models

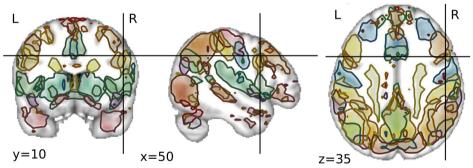
# Learning in FCM (1)

- Learn a spatial model (atlas) from the resting state data
  - ICA, clustering provide little guarantees on the result
  - Dictionary learning can be used instead



# [Varoquaux et al. IPMI 2011] V = -20

z=10



The population-level model adapts to individual configurations

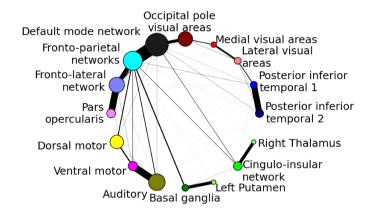
Note: Atlas learning is not tied to Functional Connectivity Mapping, but is important in different contexts (parcellations)

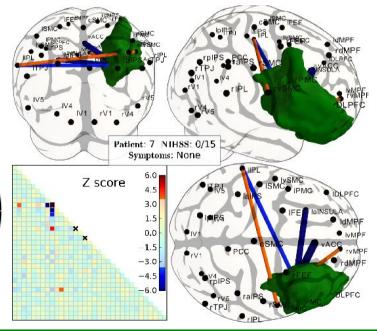
November 8<sup>th</sup>, 2011

# Learning in FCM (2)

- Next: Given a set of regions, quantify properly their interactions/integration of the underlying networks
  - Threshold correlation graph → graph statistics, graph embedding
  - Learn covariance model between the set of regions (partial correlations)
- Do statistical inference on these objects

$$\left(\hat{\mathbf{K}}_{\ell_{21}}^{(s)}\right)_{s=1..S} = \operatorname{argmin}_{\mathbf{K}^{(s)}\succ 0} \left(\sum_{s=1}^{S} \left(\operatorname{tr}(\mathbf{K}^{(s)} \,\hat{\boldsymbol{\Sigma}}_{\operatorname{sample}}^{(s)}) - \log \det \mathbf{K}^{(s)}\right) + \lambda \sum_{i \neq j} \|\mathbf{K}_{ij}^{(\cdot)}\|_{2}\right)$$





### Outline

- Neuroimaging in 5'
- Some learning problems in neuroimaging:
  - Medical diagnosis & evaluation of risk factors
  - Study of between subject-variability
  - Brain reading
  - Brain connectivity mapping
- Common technical challenges

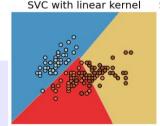
- Low SNR in the data
  - Only a fraction of the data is modeled (BOLD)
  - Presence of structured noise (noise is not i.i.d. Gaussian !) + non-stationarity in time and space
  - Few salient structures (resting-state fMRI...)
- Size of the data
  - 10<sup>4</sup> to 10<sup>6</sup> voxels in most settings
  - Compared to 10 to 10<sup>2</sup> samples available
- Related to the particular learning problems

- *Diagnostic/classification* problems
  - Needs accuracy mostly (+ robustness)
  - Suffers from curse of dimensionality, but this is well addressed in the literature

[generic approaches perform well]

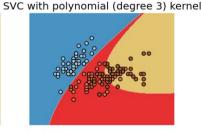
• But: not the main aim of most neuroimaging studies

Need a large set of tools to be compared against each other
Need to take into account some priors on the data/true model (smoothness, sparsity)

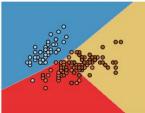


NuSVC with linear kernel

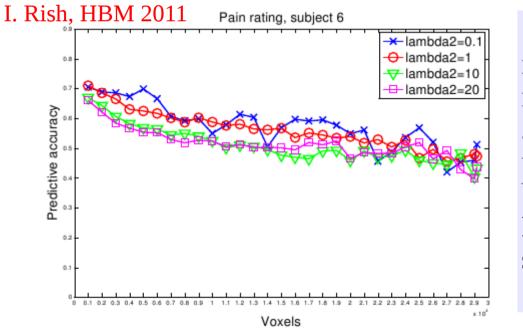




LinearSVC (linear kernel)



- Recovery: retrieve the true model that accounts for the data
  - This is the main topic of all neuroimaging / brain mapping / decoding literature.
  - Suffers much more from feature dimensionality and correlation
  - Virtually in-addressed/unseen so far

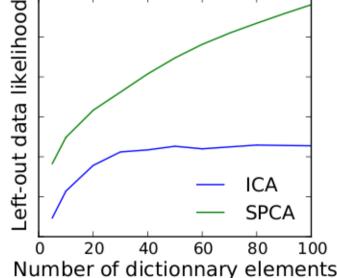


 learn EN model for pain perception rating using first 120 TRs for training and next 120 TRs for testing.
 Find 'best-predicting' 1000 voxels using EN, delete them, find next 1000 best-predicting, etc.
 Does the predictive accuracy degrade sharply?
 Surprisingly, the answer is 'NO'

### November 8<sup>th</sup>, 2011

- **Unsupervised problems**: find the right model that accounts for the data, without making in prediction (number PCA components, clusters etc.)
  - Suffers from data correlation, lack of salient structure,
  - Very difficult (no happy curve around)

Likelihood of left out data in a 3-fold stratified cross-validation on restingstate fMRI data



### This is not a conclusion

- To me Neuroimaging methodologists need
  - Implementations of various ML tools
    - Only the easily available tools are used; this is part of the success of SVM
    - Open-source, tested, documented ;-)
  - Guidelines on cross-validation (people tend to use leave-oneout without further thinking)
  - Steady warning against the danger of overfitting (the more complex the method, the most likely overfit occurs)
    - Working on only one dataset is one type of over-fitting
  - Understand the limitations of current methods regarding recovery and unsupervised problems.