
Spatial regularization and sparsity for 
multisubject brain activity decoding

Bertrand Thirion,
INRIA SaclayÎledeFrance, Parietal team

http://parietal.saclay.inria.fr
bertrand.thirion@inria.fr

http://parietal.saclay.inria.fr/
mailto:bertrand.thirion@inria.fr


November 8th, 2011 2MLNI Workshop

Outline

● Machine learning techniques for brain activity 
decoding in functional neuroimaging

● Contribution 1: Tree-based decoding
● Contribution 2: Total Variation regularization for 

penalized regression
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Functional MRI for brain activity decoding
Functional neuroimaging 
→ reveal brain physiological activity and its spatial distribution
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Encoding of fMRI data
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Inter-subject variability
Inter-subject prediction → find predictive regions stable across subjects.
Inter-subject variability → lack of voxel-to-voxel correspondence

[Tucholka 2010]
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Prediction function

Predictive linear model  

y  R∈ n is the behavioral variable.
X  R∈ n×p is the data matrix, i.e. the activations maps.
(w, b) are the parameters to be estimated.
n activation maps (samples), p voxels (features).

y  R∈ n → regression setting :
f (X, w, b) = X w + b ,

y  {-1, 1}∈ n → classification setting :
f (X, w, b) = sign(X w + b) ,
where “sign” denotes the sign function.
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Prediction functions in fMRI

● Choosing the prediction function f (X, w, b)

● Kernel machines (SVC, SVR, RVM)
● Discriminant analysis (LDA, QDA)
● Regularized [logistic] regression (Lasso, Ridge, Elastic net)

●   Curse of dimensionality

Always possible to find a prediction function with perfect prediction 
on the data used for learning

→ learn noise or non-informative features of fMRI data.

– cannot generalize to new samples 

→ Dimension Reduction/regularization is mandatory.
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Dealing with the curse of 
dimensionality in fMRI

● Feature selection (e.g. Anova, RFE) :
● Regions of interest → requires strong prior knowledge.
● Univariate methods → selected features can be redundant.
● Multivariate methods → combinatorial explosion, computational 

cost.
[Mitchell et al. 2004], [De Martino et al. 2008]

● Regularization (e.g. Lasso, Elastic net) :
● performs jointly feature selection and parameter estimation 

→ majority of the features have zero/close to zero loadings.
[Yamashita et al. 2004], [Carroll et al. 2010]

● Feature agglomeration :
● agglomeration : construction of intermediate structures 

→ based on the local redundancy of information.
[Filzmoser et al. 1999], [Flandin et al. 2003]
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Evaluation of the decoding

Prediction accuracy

Explained variance ζ :

→ assess the quantity of information shared by the pattern of voxels.

Structure of the resulting maps of weights: reflect our hypothesis on 
the spatial layout of the neural coding ?
Common hypothesis :
→ sparse : few relevant voxels/regions implied in the cognitive task.
→ compact structure : relevant features grouped into connected clusters.
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Feature agglomeration

● Parcels: sets of connected voxels.
● Thought to correspond to meaningful structures in the brain (~cortical 
areas) [Filzmoser et al. 1999, Thirion et al. 2006, Golland et al. 2007]

● Reduce the dimensionality 
of the problem by averaging 
or grouping: 105 voxels → 
102 parcels
● Cope with inter-subject 
variability.
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Creating the parcels

Hierarchical clustering → multi-scale approach
Ward’s algorithm - [J. H. Ward. 1963]
Minimizes the variance of the resulting parcels.
In our implementation, we add spatial connectivity constraints.
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Structured sparsity for fMRI data

● Structure: 

● Hierarchical clustering of the 
brain volume

● Variance minimization (Ward's 
clustering)

● With connectivity constraints

● Nested/multi-scale

● Sparsity: group lasso on the 
clusters of the tree

● Acts as the l
1
-norm on the 

vector

● If one node is set to 0 , its 
descendants are also set to 0

● Consider large parcels before 
small parcels → robustness to 
spatial variability
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Optimization of the model

● Use of proximal methods for speed-up

● Extension of gradient-based methods for non-smooth criteria 
[Nesterov, 2007]

● Algorithm described in [Jenatton et al., ICML 2010]

– Initial problem

– Proximal

– Which yields

– And boils down to 

● Computation of the proximal  is efficient in the dual space
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4 different objects. 3 different sizes.

10 subjects, 6 sessions, 12 images/session. 70000 voxels.
Inter-subject experiment : 1 image/subject/condition → 120 images.
[Eger et al. - 2008]

Real fMRI dataset on representation of objects
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Results on real data

● In the regression task, hierarchical tree l
2
, yields significantly better 

prediction than the alternatives

● The sparsest models do not perform so well

● Not too sensitive to choice of λ

(Wilcoxon two-sample 
paired signed rank test)
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Results on real data (2)

● Spatial maps: 
sparse, but with 
some compactness 
(spatial grouping / 
clustering)

● Easier to 
describe/report than 
Lasso maps

● Results in more 
robustness to spatial 
variability and  
more reproducible
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Discussion

● Discover the spatial model that provides a maximal amount of 
information on the target variable

● Find also the proper scale
● Convex criterion: an optimal solution is obtained

● The model favors large clusters against smaller ones

● Built-in model selection
● More robustness to inter-subject spatial variability
● More reproducibility

● Yet a greedy approach [with no theoretical guarantee] is almost as 
sensitive and more efficient.
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Perspectives

● Multi-task version

● Other multi-subject datasets (diagnosis) – the method is well-suited to 
deal with between-subject variability

● Can also work on any dataset with multi-scale structure

● Efficiency/optimality tradeoff ?

V. Michel, A. Gramfort, G. 
Varoquaux, E. Eger, C. Keribin 
and B. Thirion. A supervised 
clustering approach for fMRI-
based inference of brain states. 
Pattern Recognition - Special 
Issue on ’Brain Decoding’, in 
press.

R.Jenatton Rodolphe, A. 
Gramfort, V. Michel, G. 
Obozinski, E. Eger, F. Bach, 
B. Thirion. Multi-scale 
Mining of fMRI data with 
Hierarchical Structured 
Sparsity. PRNI 2011
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Regularization framework

Constrain the values of w to select few parameters which explain 
well the data.

Use of penalized regression  → Minimization problem:

✗ λJ(w) is the penalization term.
✗ ℓ(y, Xw) is the loss function, usually for regression.
✗ λ ≥ 0 balances the loss function and the penalty.
✗ Perform feature selection and parameter estimation jointly.

Usually: J is a L
1
 or L

2
 norm (ridge, lasso, elastic net)
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Total Variation (TV) regularization

Penalization J(w) based on the l
1
 norm of the gradient of the image

[L. Rudin, S. Osher, and E. Fatemi - 1992], [A. Chambolle - 2004]

gives an estimate of w with a sparse block structure

→ take into account the spatial structure of the data.

extracts regions with piecewise constant weights

→ well suited for brain mapping.

requires computation of the gradient and divergence over a mask 
of the brain with correct border conditions.
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TV-based prediction
First use of TV for prediction task.

Minimization problem

Regression → least-squares loss :

Classification → logistic loss :

TV(w) not differentiable but convex
→ optimization by iterative procedures (ISTA, FISTA).
[I. Daubechies, M. Defrise and C. De Mol - 2004], [A. Beck and M. Teboulle - 2009]
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Convex optimization for TV-based decoding

First order iterative procedures:

● FISTA procedure 

→ TV (ROF problem).

● ISTA procedure 

→ main minimization problem

Natural stopping criterion:  

duality gap.
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Intuition on simulated data

True 
weights

SVR Elastic net TV

→ extract weights with a sparse block structure.
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Prediction accuracy on inter-subject 
analyzes

Regression analysis

Classification analysis
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TV → maps for brain mapping
TV 

Elastic net

TV

SVR
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Influence of the regularization 
parameter λ 

→ results are extremely stable with respect to λ.
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Influence of the regularization 
parameter λ 

λ = 0.05
ζ = 0.84

λ = 0.01
ζ = 0.83

λ = 0.1
ζ = 0.84
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TV for fMRI-based decoding

→ derive maps similar to classical inference, within the inverse
inference framework.

Inter-subject 
classification 
analysis.

Inter-subject 
regression 
analysis.
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Conclusion on TV regularization

First use of TV for prediction problem (classification/regression).
✔ TV approach allows to take into account the spatial structure of 
the data in the regularization.
→ yields better prediction accuracy than reference methods.

✔ TV deals with inter-subject variability.
→ well suited for inter-subjects analysis.

✔ TV creates cluster-like activation maps.
→ provides interpretable maps for brain mapping.

✔ V. Michel, A. Gramfort, G. Varoquaux and B. Thirion. Total Variation regularization 
enhances regression-based brain activity prediction. In 1st ICPR Workshop on Brain 
Decoding. 2010.
✔ V. Michel, A. Gramfort, G. Varoquaux, E. Eger and B. Thirion. Total variation 
regularization for fMRI-based prediction of behaviour. Submitted to IEEE Transactions on 
Medical Imaging. 2010.



November 8th, 2011 32MLNI Workshop

scikit learn: open source kit for 
machine learning (in python)

Started dec. 2009; mainly developed by F. Pedregosa (INRIA Parietal), but shared with 
a wide community

Contains standard tools for machine learning: classifiers, regression, feature selection, 
clustering, dimension reduction

Emphasis on efficiency (moderate computation time) and easy/intuitive use (doc + tests 
+ examples)

Not dedicated to neuroimaging (but many parts have been developed in view of 
neuroimaging applications) – see http://nisl.github.com/

 Freely available, open to contributions http://scikit-learn.org

http://nisl.github.com/
http://scikit-learn.org/
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Thank you for your attention
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