Spatial regularization and sparsity for multi-subject brain activity decoding

Bertrand Thirion, INRIA Saclay-Île-de-France, Parietal team http://parietal.saclay.inria.fr bertrand.thirion@inria.fr

Outline

- Machine learning techniques for brain activity decoding in functional neuroimaging
- Contribution 1: Tree-based decoding
- Contribution 2: Total Variation regularization for penalized regression

Functional MRI for brain activity decoding

Functional neuroimaging

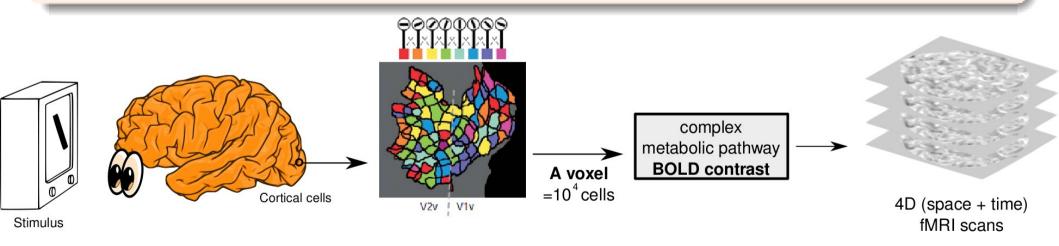
 $\rightarrow\,$ reveal brain physiological activity and its spatial distribution

Functional Magnetic Resonance Imaging - fMRI

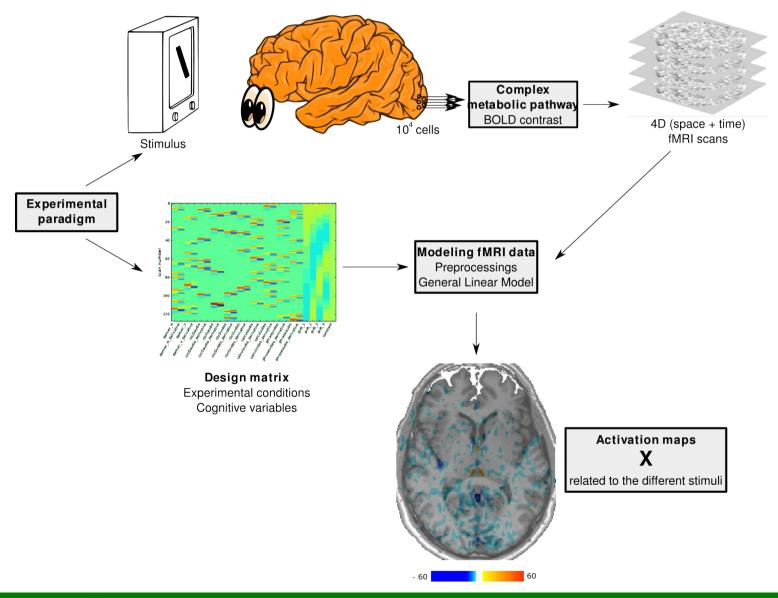
🖌 non-invasive.

- ✓ good spatial resolution \rightarrow voxel (volumetric pixel) $\sim 2 \times 2 \times 2$ mm.
- Blood Oxygenation Level-dependent (BOLD) contrast

ightarrow measures a metabolic correlate of neural activity.



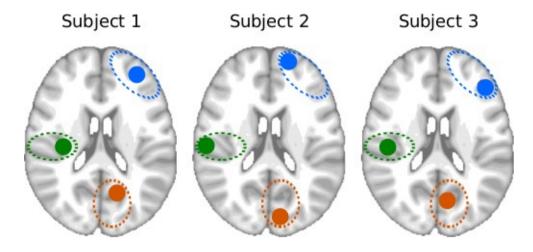
Encoding of fMRI data



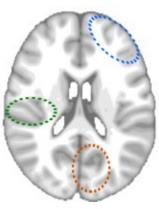
November 8th, 2011

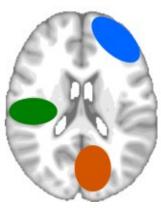
Inter-subject variability

Inter-subject prediction \rightarrow find predictive regions stable across subjects. Inter-subject variability \rightarrow lack of voxel-to-voxel correspondence



Intersection of the predictive regions Union of the predictive regions





November 8th, 2011

MLNI Workshop

[Tucholka 2010]

Prediction function

Predictive linear model

$$\mathbf{y} = f(\mathbf{X}, \mathbf{w}, b) = \mathbf{X} \mathbf{w} + b$$

 $y \in \mathbb{R}^{n}$ is the behavioral variable. $X \in \mathbb{R}^{n \times p}$ is the data matrix, i.e. the activations maps. (w, b) are the parameters to be estimated. **n** activation maps (samples), **p** voxels (features).

> y ∈ Rⁿ → regression setting : f (X, w, b) = X w + b , y ∈ {-1, 1}ⁿ → classification setting : f (X, w, b) = sign(X w + b) , where "sign" denotes the sign function.

Prediction functions in fMRI

- Choosing the prediction function f (X, w, b)
 - Kernel machines (SVC, SVR, RVM)
 - Discriminant analysis (LDA, QDA)
 - Regularized [logistic] regression (Lasso, Ridge, Elastic net)

• $p \gg n$ Curse of dimensionality

Always possible to find a prediction function with perfect prediction on the data used for learning

- \rightarrow learn noise or non-informative features of fMRI data.
- cannot generalize to new samples
- → **Dimension Reduction/regularization** is mandatory.

Dealing with the curse of dimensionality in fMRI

- **Feature selection** (e.g. Anova, RFE) :
 - Regions of interest \rightarrow requires strong prior knowledge.
 - Univariate methods \rightarrow selected features can be redundant.
 - Multivariate methods → combinatorial explosion, computational cost.

[Mitchell et al. 2004], [De Martino et al. 2008]

- **Regularization** (e.g. Lasso, Elastic net) :
 - performs jointly feature selection and parameter estimation

 → majority of the features have zero/close to zero loadings.

 [Yamashita et al. 2004], [Carroll et al. 2010]
- Feature agglomeration :
 - agglomeration : construction of intermediate structures
 - \rightarrow based on the local redundancy of information.

[Filzmoser et al. 1999], [Flandin et al. 2003]

Evaluation of the decoding

Prediction accuracy

Explained variance ζ :

 \rightarrow assess the quantity of information shared by the pattern of voxels.

Structure of the resulting maps of weights: reflect our hypothesis on the spatial layout of the neural coding ? **Common hypothesis :**

→ **sparse** : few relevant voxels/regions implied in the cognitive task.

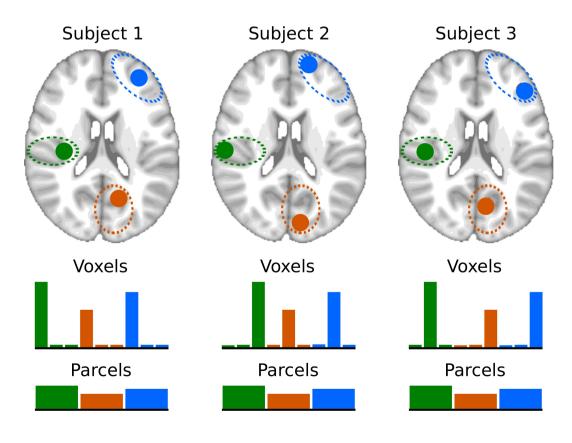
→ **compact structure** : relevant features grouped into connected clusters.

Outline

- Machine learning techniques for brain activity decoding in functional neuroimaging
- Contribution 1: Tree-based decoding
- Contribution 2: Total Variation regularization for penalized regression

Feature agglomeration

- Parcels: sets of connected voxels.
- Thought to correspond to meaningful structures in the brain (~cortical areas) [Filzmoser et al. 1999, Thirion et al. 2006, Golland et al. 2007]

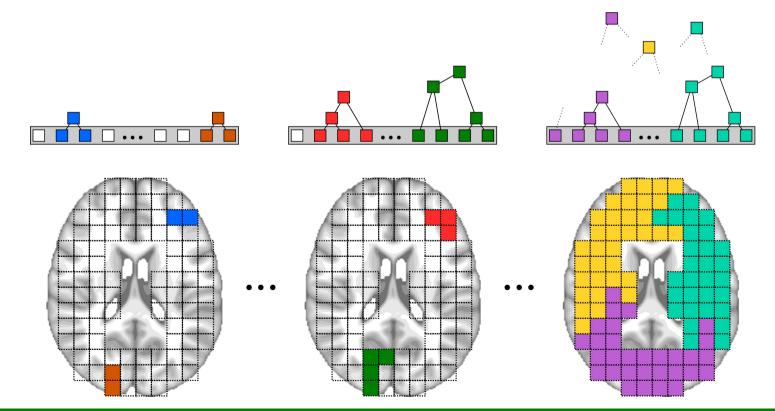


- Reduce the dimensionality of the problem by averaging or grouping: 10^5 voxels \rightarrow 10^2 parcels
- Cope with inter-subject variability.

Creating the parcels

Hierarchical clustering → multi-scale approach

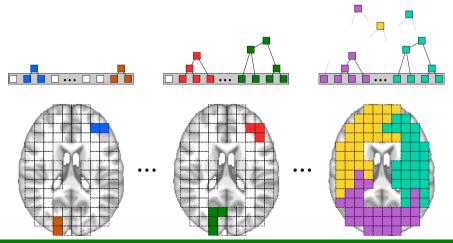
Ward's algorithm - [J. H. Ward. 1963] Minimizes the variance of the resulting parcels. In our implementation, we add spatial connectivity constraints.



November 8th, 2011

Structured sparsity for fMRI data

- Structure:
- Hierarchical clustering of the brain volume
- Variance minimization (Ward's clustering)
- With connectivity constraints
- Nested/multi-scale



• Sparsity: group lasso on the clusters of the tree

$$\Omega(\mathbf{w}) = \sum_{g \in \mathcal{G}} \|\mathbf{w}_g\|_2 = \sum_{g \in \mathcal{G}} \left[\sum_{j \in g} \mathbf{w}_j^2\right]^{1/2}$$

- Acts as the l_1 -norm on the vector $(\|\mathbf{w}_g\|_2)_{g \in \mathcal{G}}$
- If one node is set to 0, its descendants are also set to 0
- Consider large parcels before small parcels → robustness to spatial variability

Optimization of the model

- Use of proximal methods for speed-up
 - Extension of gradient-based methods for non-smooth criteria [Nesterov, 2007]
 - Algorithm described in [Jenatton et al., ICML 2010]
 - Initial problem $\min_{w \in \mathbb{R}^p} ||Y Xw||^2 + \lambda \Omega(w) = \ell(w) + \lambda \Omega(w)$

- Proximal
$$\min_{w \in \mathbb{R}^p} \ell(\hat{w}) + (w - \hat{w})^T \nabla \ell(\hat{w}) + \lambda \Omega(w) + \frac{L}{2} \|w - \hat{w}\|^2$$

- Which yields $\min_{w \in \mathbb{R}^p} \frac{1}{2} \|w - (\hat{w} - \frac{1}{L} \nabla \ell(\hat{w}))\|^2 + \frac{\lambda}{L} \Omega(w)$

- And boils down to $\operatorname{prox}_{\lambda,\Omega}(v) = \min_{w \in \mathbb{R}^p} ||w - v||^2 + \lambda \Omega(w)$

• Computation of the proximal is efficient in the dual space

Real fMRI dataset on representation of objects

4 different objects.

3 different sizes.

10 subjects, 6 sessions, 12 images/session. 70000 voxels. **Inter-subject experiment** : 1 image/subject/condition \rightarrow 120 images. [Eger et al. - 2008]

Results on real data

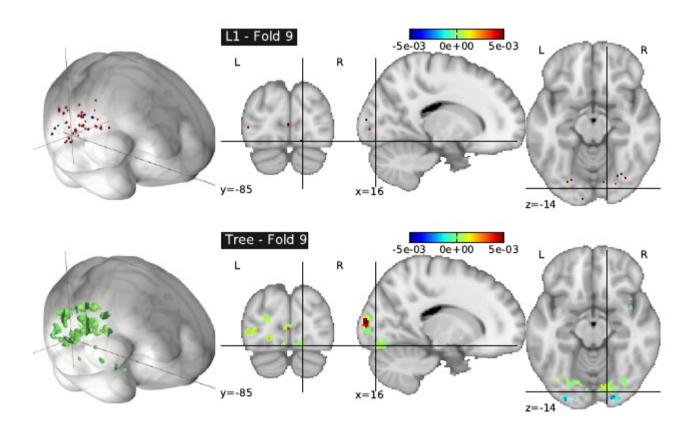
Regularization function	mean error	std error	p-value w.r.t. Hierarchical Tree ℓ_2	median % non-zero coef.
Ridge - ℓ_2	8.3	4.6	0.096	100.00
Lasso - ℓ_1	12.1	6.6	0.013*	0.10
Adaptive Lasso	11.3	8.8	0.05*	0.10
ℓ_1 (Tree weights)	8.4	4.7	0.03*	0.02
Hierarchical Tree ℓ_2	7.1	4.0	-	9.36

(Wilcoxon two-sample paired signed rank test)

- In the regression task, hierarchical tree l₂, yields significantly better prediction than the alternatives
- The sparsest models do not perform so well
- Not too sensitive to choice of $\boldsymbol{\lambda}$

Results on real data (2)

- Spatial maps: sparse, but with some compactness (spatial grouping / clustering)
- Easier to describe/report than Lasso maps
- Results in more robustness to spatial variability and more reproducible



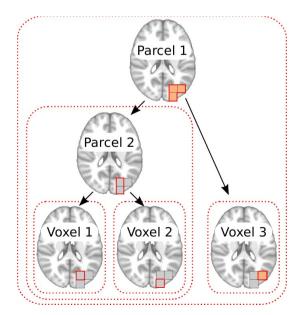
Discussion

- Discover the spatial model that provides a maximal amount of information on the target variable
 - Find also the proper scale
- Convex criterion: an optimal solution is obtained
- The model favors large clusters against smaller ones
 - Built-in model selection
 - More robustness to inter-subject spatial variability
 - More reproducibility
- Yet a greedy approach [with no theoretical guarantee] is almost as sensitive and more efficient.

Perspectives

- Multi-task version
- Other multi-subject datasets (diagnosis) the method is well-suited to deal with between-subject variability
- Can also work on any dataset with multi-scale structure
- Efficiency/optimality tradeoff ?

R.Jenatton Rodolphe, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, B. Thirion. Multi-scale Mining of fMRI data with Hierarchical Structured Sparsity. PRNI 2011



V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin and B. Thirion. *A supervised clustering approach for fMRIbased inference of brain states*. Pattern Recognition - Special Issue on 'Brain Decoding', in press.

November 8th, 2011

Outline

- Machine learning techniques for brain activity decoding in functional neuroimaging
- Contribution 1: Tree-based decoding
- Contribution 2: Total Variation regularization for penalized regression

Regularization framework

Constrain the values of w to select few parameters which explain well the data.

Use of **penalized regression** \rightarrow Minimization problem:

$$\hat{\mathbf{w}} = \underset{\mathbf{w},b}{\operatorname{argmin}} \ \ell(\mathbf{y}, \mathbf{X}\mathbf{w}) + \lambda J(\mathbf{w}) \ , \ \lambda \geq 0$$

- * $\lambda J(w)$ is the **penalization term**.
- * $\ell(y, Xw)$ is the *loss function*, usually $\|y Xw\|^2$ for regression.
- × $\lambda \ge 0$ balances the loss function and the penalty.
- * Perform feature selection and parameter estimation *jointly*.

Usually: J is a L₁ or L₂ norm (ridge, lasso, elastic net)

Total Variation (TV) regularization

Penalization J(w) based on the **l**₁ **norm of the gradient of the image**

$$J(\mathbf{w}) = TV(\mathbf{w}) = \int_{\omega \in \Omega} \|
abla \mathbf{w}\| d\omega$$

[L. Rudin, S. Osher, and E. Fatemi - 1992], [A. Chambolle - 2004]

gives an estimate of w with a **sparse block structure**

 \rightarrow take into account the spatial structure of the data.

extracts regions with piecewise constant weights

 \rightarrow well suited for brain mapping.

requires computation of the gradient and divergence over a mask of the brain with correct border conditions.

TV-based prediction

First use of TV for prediction task.

Minimization problem

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\mathbf{w},b} \ \ell(\mathbf{y}, \mathbf{Xw}) + \lambda TV(\mathbf{w}) \ , \ \lambda \geq 0$$

Regression \rightarrow least-squares loss :

$$\ell(\mathbf{y}, \mathbf{X}\mathbf{w}) = rac{1}{2n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

Classification \rightarrow logistic loss :

$$\ell(\mathbf{y}, \mathbf{X}\mathbf{w}) = \frac{\sum_{i=1}^{n} \log \left(1 + \exp^{-y_i(\mathbf{x}_i^T \mathbf{w})}\right)}{n}$$

TV(w) not differentiable but convex

 \rightarrow optimization by iterative procedures (ISTA, FISTA).

[I. Daubechies, M. Defrise and C. De Mol - 2004], [A. Beck and M. Teboulle - 2009]

Convex optimization for TV-based decoding

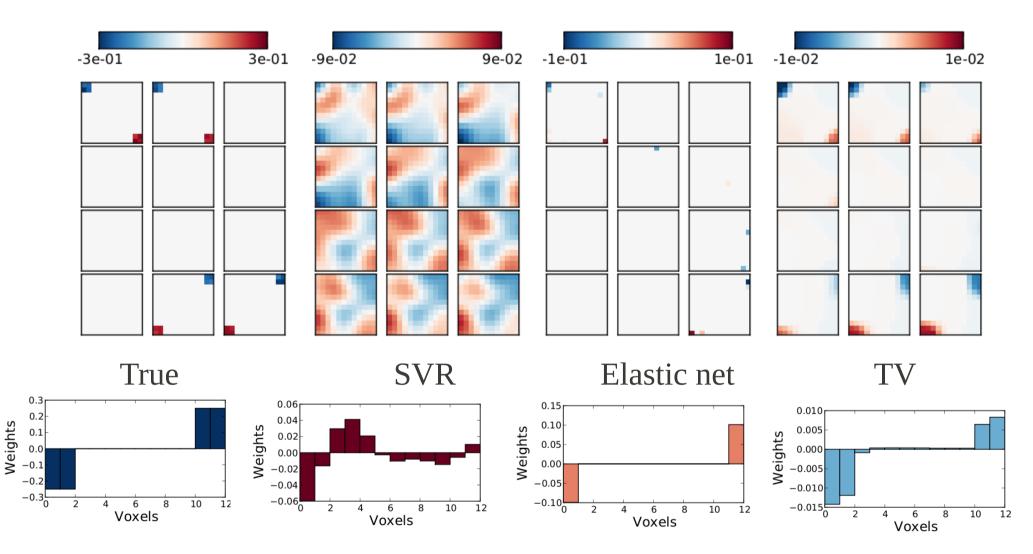
First order iterative procedures:

- FISTA procedure
 - \rightarrow TV (ROF problem).
- ISTA procedure
 - \rightarrow main minimization problem
- Natural stopping criterion:

duality gap.

Require: Set maximum number of iterations K (ISTA), and the threshold ϵ on the dual gap (FISTA). **Require:** Initialize $\mathbf{z} \in \mathbb{R}(\Omega^3)$ with zeros. ### ISTA loop ### for k = 1. K do $\mathbf{u} = \mathbf{w} - \frac{1}{l} \nabla \mathcal{L}(\mathbf{w})$ ### FISTA loop ### Initialize $\mathbf{z}_{aux} = \mathbf{z}, t = 1$ while $\delta_{gap}(\mathbf{u} + \lambda \operatorname{div}(\mathbf{z})) > \epsilon$ do $\mathbf{z}_{old} = \mathbf{z}$ z = $\boldsymbol{\Pi}_{\boldsymbol{\mathsf{K}}}\left(\boldsymbol{\mathsf{z}}_{\textit{\mathsf{aux}}} - \tfrac{1}{\lambda\tilde{\boldsymbol{\mathsf{L}}}}\mathrm{grad}(\boldsymbol{\mathsf{Lu}} + \lambda\mathrm{div}(\boldsymbol{\mathsf{z}}_{\textit{\mathsf{aux}}}))\right)$ $t_{old} = t$ $t = (t + \sqrt{1 + 4t^2})/2$ $\mathbf{z}_{aux} = \mathbf{z} + \frac{t_{old}-1}{t} (\mathbf{z} - \mathbf{z}_{old})$ end while $\mathbf{w} = \mathbf{u} + \lambda \operatorname{div}(\mathbf{z})$ end for return w

Intuition on simulated data



 \rightarrow extract weights with a sparse block structure.

November 8th, 2011

Prediction accuracy on inter-subject analyzes

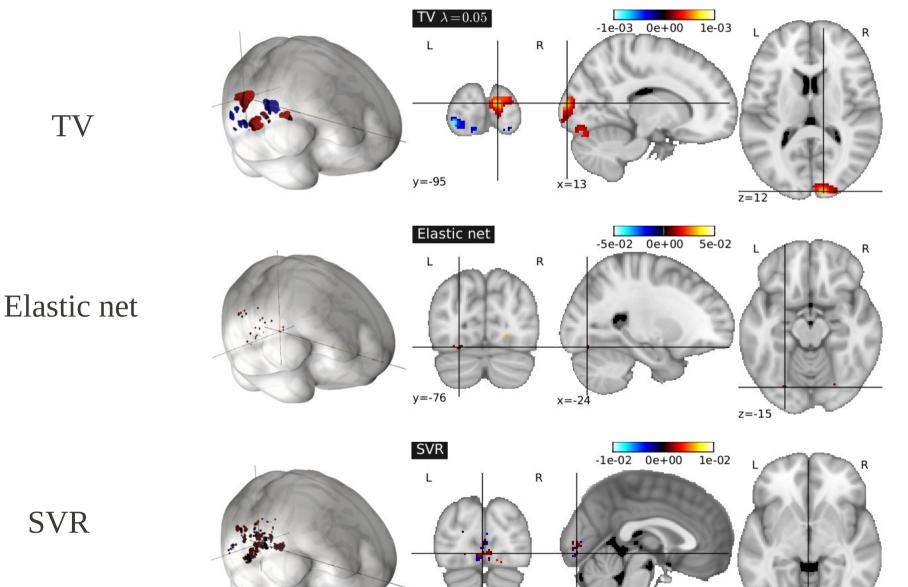
Regression analysis

Methods	mean ζ	std ζ	max ζ	min ζ	p-value to TV
SVR	0.77	0.11	0.97	0.58	0.0277 **
Elastic net	0.78	0.1	0.97	0.65	0.0405 **
TV $\lambda = 0.05$	0.84	0.07	0.97	0.72	-

Classification analysis

Methods	mean κ	std κ	max κ	min κ	p-value to SVC
SVC	48.33	15.72	75.0	25.0	-
SMLR	42.5	9.46	58.33	33.33	0.2419
TV $\lambda = 0.05$	45.83	14.55	66.67	25.0	0.7128

$TV \rightarrow maps$ for brain mapping



November 8th, 2011

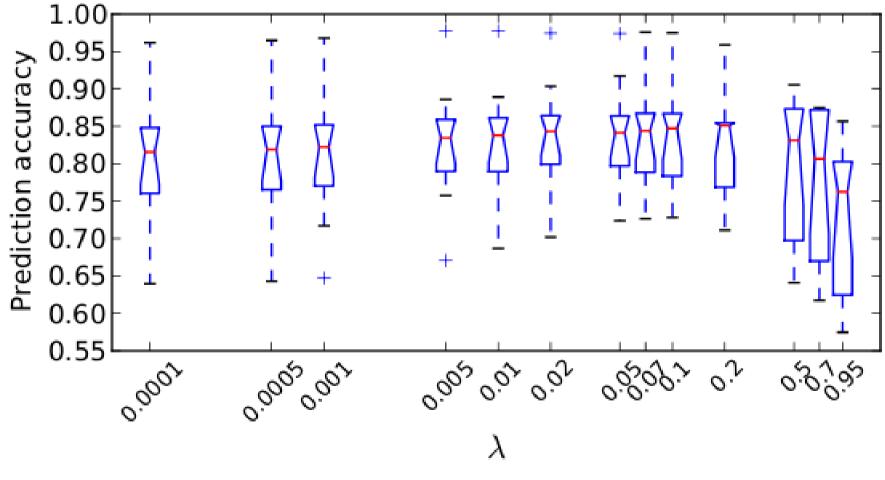
MLNI Workshop

y=-85

x=0

z=-5

Influence of the regularization parameter λ



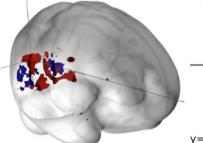
 \rightarrow results are extremely stable with respect to λ .

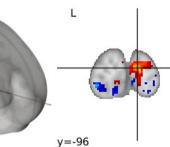
November 8th, 2011

Influence of the regularization parameter λ

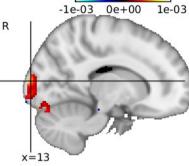
λ	=	0.01
ζ	=	0.83

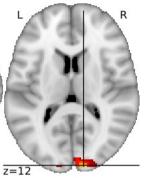
 $\lambda = 0.05$ $\zeta = 0.84$

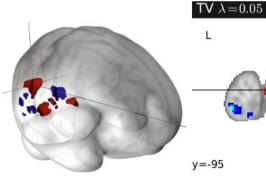


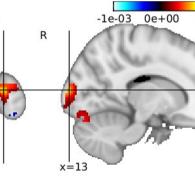


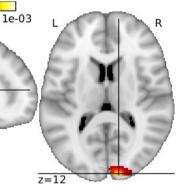
TV $\lambda = 0.01$



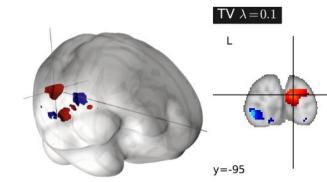


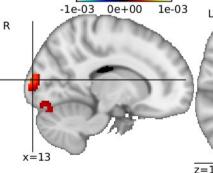


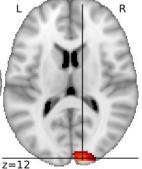




 $\lambda = 0.1$ $\zeta = 0.84$



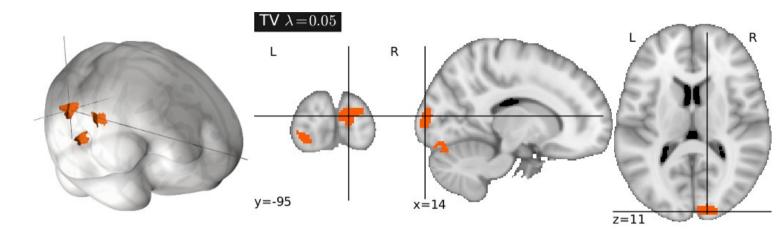




November 8th, 2011

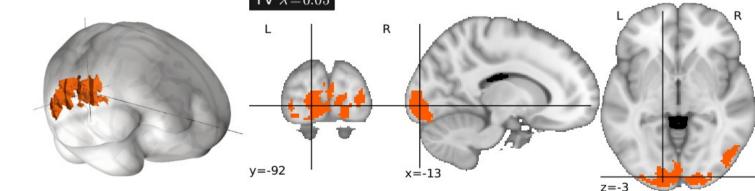
TV for fMRI-based decoding

Inter-subject regression analysis.



TV $\lambda = 0.05$

Inter-subject classification analysis.



 \rightarrow derive maps similar to classical inference, within the inverse inference framework.

Conclusion on TV regularization

First use of TV for prediction problem (classification/regression).
TV approach allows to take into account the spatial structure of the data in the regularization.

- \rightarrow yields better prediction accuracy than reference methods.
- TV deals with inter-subject variability.
 - \rightarrow well suited for inter-subjects analysis.
- TV creates cluster-like activation maps.
- \rightarrow provides interpretable maps for brain mapping.

 V. Michel, A. Gramfort, G. Varoquaux and B. Thirion. *Total Variation regularization enhances regression-based brain activity prediction*. In 1st ICPR Workshop on Brain Decoding. 2010.

 V. Michel, A. Gramfort, G. Varoquaux, E. Eger and B. Thirion. *Total variation regularization for fMRI-based prediction of behaviour*. Submitted to IEEE Transactions on Medical Imaging. 2010.

scikit learn: open source kit for machine learning (in python) ран

machine learning in Python

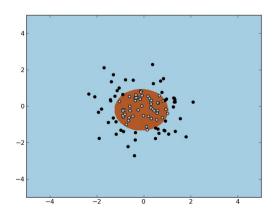
• Started dec. 2009; mainly developed by F. Pedregosa (INRIA Parietal), but shared with a wide community

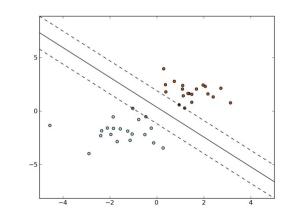
• Contains **standard** tools for machine learning: classifiers, regression, feature selection, clustering, dimension reduction

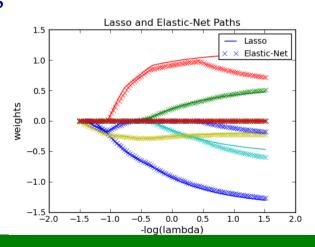
• Emphasis on **efficiency** (moderate computation time) and easy/intuitive use (doc + tests + examples)

• Not dedicated to neuroimaging (but many parts have been developed in view of neuroimaging applications) – see http://nisl.github.com/

• Freely available, open to contributions http://scikit-learn.org







November 8th, 2011

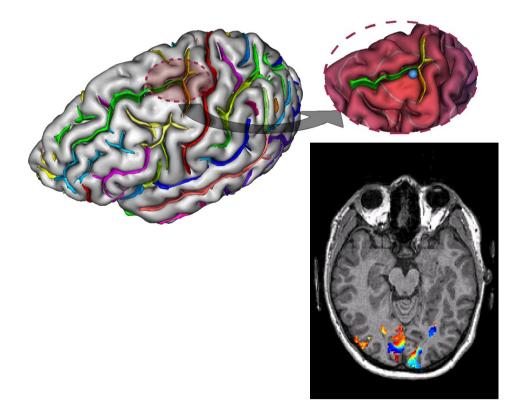
scikits

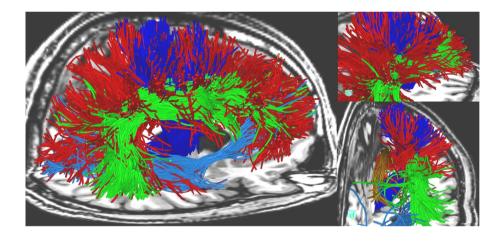
MLNI Workshop

Acknowledgements

- Many thanks to my co-workers: V. Michel, G.
 Varoquaux, A. Gramfort, F. Pedregosa, P. Fillard, J.B.
 Poline, V.Fritsch, V. Siless, S.Medina, R. Bricquet
- To INRIA colleagues: G.Celeux, C. Keribin, F. Bach, R. Jenatton, G. Obozinski
- To CEA/Neurospin & INSERM U562 colleagues: E.Eger, A. Kleinschmidt, S.Dehaene, J.F. Mangin

Thank you for your attention





http://parietal.saclay.inria.fr

November 8th, 2011