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• Functional connectivity: “statistical dependence between 
time series in distinct brain locations”

• “Classical” wavelet correlation pipeline*:
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From imaging data to functional connectivity

* [Achard et al.,  J. Neurosci 2006]
Matlab code: http://miplab.unige.ch/richiardi/software.php Sophie Achard’s R code: http://cran.r-project.org/web/packages/brainwaver/
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Functional connectivity as a graph
• The correlation matrix (minus the diagonal) can be 

seen as the adjacency matrix A of a “functional 
connectivity graph”: 
• Vertices correspond to voxels or regions
• Edge labels encode pairwise strength of temporal dependence
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Agenda for this talk

• Preliminaries

• Graph family of interest

• Three different graph embeddings
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Functional connectivity as a labelled graph

• “Functional connectivity graphs”  can be written 
formally as labelled graphs.

• Labelled graphs are written:

• V: the set of vertices (nodes, brain regions, ICA components)

• E: the set of edges (connections between nodes)

• α: vertex labelling function (returns a name or number for each 
node, for example the anatomical label of the region)

• β: edge labelling function (returns a name or number for each 
edge, for example the temporal correlation strength)

• A square adjacency matrix (“connectivity matrix”) can encode 
the presence/absence of connections, and their strengths. It is 
generally denoted A.
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g = (V,E,α,β)



A restricted class for atlased connectivity graphs
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• Functional brain networks obtained by atlasing can 
adequately be modelled by a restricted class of labelled graphs 
we call graphs with fixed-cardinality vertex 
sequences, a subclass of Dickinson et al.’s graphs with unique 
node labels:

• Fixed number of vertices for all graph instances:

• Fixed ordering of the set (sequence) V:

• Scalar edge labelling functions: 

• Undirected: 

• This is a very restricted (but still expressive) class of graphs

• This limits the effectiveness of many “classical” methods for 
classifying general graphs (based on graph matching).

 [Dickinson et al., IJPRAI, 2004]

β : (vi, vj) �→ R

V = (v1, v2, . . . , vM )

∀i |Vi| = M

AT = A

[Richiardi et al.,  ICPR, 2010][Richiardi et al.,  NeuroImage, 2011]



Graph matching techniques
• Goal: recover an optimal permutation 

matrix    to transform one graph into the 
other (map nodes).

• But in our case,         by def.

• Discrete optimisation: search algorithm (A*, 
branch-and-bound...) + cost function

• Cost function is typically Graph Edit Distance (GED), 
but in our case, reduces to
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d(g1, g2) = |C⊕|+ |Cβi �=βj |

set of edges belonging 
exclusively to one or the 

other graph

set of edges with 
unequal labels

P̂ = I

P̂



Graph matching techniques (2)
• Continuous optimisation: find    to minimise 

the cost

• In our case, reduces to 

• Spectral methods: eigendecomposition of 
adjacency matrix or Laplacian

• Look more promising for our type of graph

• But many methods don’t make use of eigenvectors

• ... and not all decompositions are desirable
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Embedding connectivity graphs
• Representing the connectivity graph in a  vector 

space via graph embedding allows the use 
of a vast statistical machine learning repertoire
• Here we’re not interested in the arc crossing minimisation 

problem or planar graphs

• We proposed several ways
of doing this, including

1. Direct embedding

2. Dissimilarity embedding

3. Graph and vertex attribute
embedding
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Agenda for this talk

• Preliminaries

• Graph family of interest

• Three different graph embeddings

• Direct embedding

• Dissimilarity embedding

• Graph/vertex attribute embedding
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1: Direct graph embedding
• Direct embedding provides a suitable vector-space 

representation for the class of graphs of interest
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Agenda for this talk

• Preliminaries

• Graph family of interest

• Three different graph embeddings

• Direct embedding

• Dissimilarity embedding

• Graph/vertex attribute embedding
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2: Dissimilarity embedding
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based on [Riesen & Bunke, Int. J. Pat. Rec. Artif. Int. 2009] 

[Richiardi et al., ICPR 2010]

and [Xing et al. NIPS 2002] 

Dissimilarity metric learning

d(g, p) = ||ag − ap||D =
�

(ag − ap)TD(ag − ap)

Fixed dissimilarity

d(cij , c
�
ij) =

�
|β(i, j)− β�(i, j)| cij ∈ C, c�ij ∈ C �

K otherwise

d(g, p) =

|E|�

i=1

|E|�

j=i+1

d(cij , c
�
ij)

Edge label disssimilarity

Graph dissimilarity

d(g, p) = 1
2 ||ag − ap||1 (if no missing edges)

Embedding vector 
ϕP
n (g) = (d(g, p1), . . . , d(g, pn)) ∈ Rn

class 1 prototypes class 2 prototypes

d(g, p1) d(g, pn)

Principle



Dissimilarity space
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• Dissimilarity embedding

• Graph/vertex attribute embedding
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3: “Attributes” of connectivity graphs
• Graphs G, H are isomorphic iff there exists 

a permutation matrix P s.t. 

• In our case (atlased connectivity graph):

• Hence connectivity graphs are isomorphic iff

• Graph invariant:  (set of) parameter(s) 
yielding the same value for isomorphic graphs

• To compare noisy connectivity graphs we are more 
interested in ε-isomorphism, and ε-invariants*

• Some invariants may degenerate depending on     : 
non-isomorphic graphs may have the same value. Use 
several invariants**.
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P
�
= I

Eg = Eh and
∀i, j βg(vi, vj) = βh(vi, vj)

PAgP
T = Ah

*[Jain & Wysotzki, Neurocomputing, 2005]

|V|

** as in chemometrics: [Bonchev et al, J Comput Chemistry 1981]



Experiments
• Task: inter-subjet age group prediction (15 x 24 y.o. avg vs  

11x 67 y.o. avg) from graph/vertex properties of resting-
state connectivity graphs.

• Threshold graphs using a fixed and ‘range’ number of edges, 
and use {strength, diversity, degree, global efficiency,  and 
local efficiency}

• Results: only global and local efficiency are convincing (up 
to 89% accuracy (CI 71-96%)). But on this dataset this 
works better than direct embedding.
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[Richiardi et al.,  PRNI, 2011]

• Orbito-frontal cortex, 
amygdala, and 
parahippocampal formation 
are relatively the most 
predictive regions (broadly 
agrees with previous 
studies*)

• In addition, the lingual gyrus 
shows age-related activation 
changes during memory 
tasks

*[Achard & Bullmore, PLoS CompBiol, 2007]
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Summary: pros and cons
• Direct embedding:

+ satisfactory prediction on several datasets
+ easy mapping of discriminative pattern
-  curse of dimensionality!

• Dissimilarity embedding: 
+ low-dimensional representation (O(N))
+ custom dissimilarity metrics promising, on the way to 
graph kernels
-  performs worse than direct embedding on most datasets

• Graph/vertex attribute embedding:
+ low-dimensional representation (O(|V|))
+ interpretable in terms of network properties
+ yields “deep”(ish) features
-  many attributes are weakly discriminative
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Final Thoughts
• Learning with connectivity graphs is useful for a range 

of cognitive and clinical neuroscience problems
• Complementarity with BOLD activation modelling is clear (focuses 

on functional integration)

• We can visualise and interpret results both in terms of connections 
and in terms of regions

• Atlasing imposes some restrictions but there is plenty of room

• We can trivially restrict analysis to small subnetworks (e.g. speech 
processing areas)

• Much work to do: physiological noise, modelling, and 
LF oscillations interpretation
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