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From imaging data to functional connectivity

® Functional connectivity: “statistical dependence between
time series in distinct brain locations”
“Classical” wavelet correlation pipeline™:
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* [Achard et al., . Neurosci 2006]

Matlab code: http://miplab.unige.ch/richiardi/software.php 2 Sophie Achard’s R code: http://cran.r-project.org/web/packages/brainwaver/
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Functional connectivity as a graph

® The correlation matrix (minus the diagonal) can be
seen as the adjacency matrix A of a “functional

connectivity graph™:
® Vertices correspond to voxels or regions
e Edge labels encode pairwise strength of temporal dependence




Agenda for this talk

® Graph family of interest



Functional connectivity as a labelled graph

® “Functional connectivity graphs” can be written
formally as labelled graphs.

® | abelled graphs are written: ¢=(V.E,, )

® V:the set of vertices (nodes, brain regions, ICA components)
® E:the set of edges (connections between nodes)

® (:vertex labelling function (returns a name or number for each
node, for example the anatomical label of the region)

® [3: edge labelling function (returns a name or number for each
edge, for example the temporal correlation strength)

® A square adjacency matrix (‘‘connectivity matrix’’) can encode
the presence/absence of connections, and their strengths. It is

generally denoted A.



A restricted class for atlased connectivity graphs

® Functional brain networks obtained by atlasing can
adequately be modelled by a restricted class of labelled graphs
we call graphs with fixed-cardinality vertex
sequences, a subclass of Dickinson et al’s graphs with unique

node labels:

® Fixed number of vertices for all graph instances: Vi |V;| =M

® Fixed ordering of the set (sequence) V: V = (v1,02,...,um)
® Scalar edge labelling functions: B (vi,v;) =R

® Undirected: AT = A

® This is a very restricted (but still expressive) class of graphs

® This limits the effectiveness of many “classical” methods for
classifying general graphs (based on graph matching).

[Richiardi et al., Neurolmage, 201 1] [Richiardi et al., ICPR,2010] 6 [Dickinson et al., |PRAI, 2004]



Graph matching techniques

® (Goal: recover an optimal permutation
matrix P to transform one graph into the
other (map nodes).

® Butin our case, P =1 by def.

® Discrete optimisation: search algorithm (A*,
branch-and-bound...) + cost function

® Cost function is typically Graph Edit Distance (GED),
but in our case, reduces to
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Graph matching techniques (2)

® Continuous optimisation: find P to minimise
the cost ||A; — PA,P7||;

® |n our case, reduces to \/ir((A: - A:)7(A; - Ay))

® Spectral methods: eigendecomposition of
adjacency matrix or Laplacian

® | ook more promising for our type of graph
® But many methods don’t make use of eigenvectors

® ..and not all decompositions are desirable
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Embedding connectivity graphs

® Representing the connectivity graph in a vector

s?ace via graph embedding allows the use
of a vast statistical machine learning repertoire =N
® Here we're not interested in the arc crossing minimisation %é%
pbroblem or planar graphs =
® VWe proposed several ways i ;
of doing this, including - =

|. Direct embedding

embeddin7

2. Dissimilarity embedding

3. Graph and vertex attribute
embedding

|
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® Three different graph embeddings
® Direct embedding
® Dissimilarity embedding

® Graph/vertex attribute embedding



|: Direct graph embedding

® Direct embedding provides a suitable vector-space
representation for the class of graphs of interest
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2: Dissimilarity embedding

Principle Fixed dissimilarity

class | prototypes class 2 prototypes

| Edge label disssimilarity

Y ‘5(27])_6/(27])‘ Cz'jEC,C;jGC/
d(CZ], Cij) - { K otherwise
Graph dissimilarity

£ |E|

d(g,p) =) Y dlcij, i)

i=1 j=i+1

d(g,p) = 3]|lag — a,||1 (if no missing edges)

Dissimilarity metric learning

A(g,p) = llag — allp = 1/(ay — 2,)7D(a, — ay)

Embedding vector
e (9) = (d(g,p1), -, d(g,pn)) € R

[Richiardi et al., ICPR 2010]
based on [Riesen & Bunke, Int. . Pat. Rec. Artif. Int. 2009]
|5 and [Xing et al. NIPS 2002]



Dissimilarity space

Euclidean

Dissimilarity space (30 D)

»
2
>
o
£

Learned

most simiar (rest s2)




Agenda for this talk

® Three different graph embeddings

® Graph/vertex attribute embedding



3:"Attributes” of connectivity graphs

® Graphs G, H are isomorphic iff there exists

a permutation matrix P s.t. PA P’ = A,

® In our case (atlased connectivity graph): P = 1

® Hence connectivity graphs are isomorphic iff
Eqg =& and
Vi, J Bg(vivvj) = On(vi, Uj)
® Graph invariant: (set of) parameter(s)
yielding the same value for isomorphic graphs

® Jo compare noisy connectivity graphs we are more
interested in €-isomorphism, and €-invariants™

® Some invariants may degenerate depending on |V|:
non-isomorphic graphs may have the same value. Use

several invariants™*,
*[Jain & Wysotzki, Neurocomputing, 2005]

18 s 25 in chemometrics: [Bonchev et al,] Comput Chemistry 1981]
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Experiments

® Task:inter-subjet age group prediction (15 x 24 y.o. avg vs
| Ix 67 y.o.avg) from graph/vertex properties of resting-
state connectivity graphs.
® Threshold graphs using a fixed and ‘range’ number of edges, .
and use {strength, diversity, degree, global efficiency, and
local efficiency}
® Results: only global and local efficiency are convincing (up
to 89% accuracy (Cl 71-96%)). But on this dataset this S0 s 20 %
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*[Achard & Bullmore, PLoS CompBiol, 2007]



Summary: pros and cons

® Direct embedding:

+ satisfactory prediction on several datasets
+ easy mapping of discriminative pattern
- curse of dimensionality!

® Dissimilarity embedding:
+ low-dimensional representation (O(N))
+ custom dissimilarity metrics promising, on the way to
graph kernels

- performs worse than direct embedding on most datasets

® Graph/vertex attribute embedding:

+ low-dimensional representation (O(|V]))
+ interpretable in terms of network properties

+ yields “deep’(ish) features
- many attributes are weakly discriminative
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Final Thoughts

® | earning with connectivity graphs is useful for a range
of cognitive and clinical neuroscience problems

® Complementarity with BOLD activation modelling is clear (focuses
on functional integration)

® W/e can visualise and interpret results both in terms of connections
and in terms of regions

® Atlasing imposes some restrictions but there is plenty of room
® We can trivially restrict analysis to small subnetworks (e.g. speech
processing areas)

® Much work to do: physiological noise, modelling, and
LF oscillations interpretation
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