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Infinitely many features?

When does it occurs?

Feature extraction with continuous parameters

Wavelet or Gabor based features of the form

〈x, ψj ,k,θ〉 〈x, ψu,v ,σ,λ〉

Brain Computer Interfaces problem or texture ecognition

Explicit feature maps with continuous parameters

kernel with feature scaling : k(x, x′) = e
−

∑
j

(xj−x′j )2

2σ2
j

Approach

Consider a empirical risk minimization framework that selects few
features among infinitely many

sparsity inducing regularizers
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Simple illustration using wavelets

Look for the best discriminative wavelet basis for classifying texture
patches

“discriminative” = maximize distance of means in wavelet
decomposition space

wavelets are parametrized through their QMF by vector of angles

discretization leads to large amount of features
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Related work

Extension the Lasso to infinite dimension feature space (Rosset,
COLT 2004)

min
p∈P,p≥0

n∑
i=1

L

(
yi ,

∫
Φ̃θ(xi )p(θ)dθ

)
st

∫
p(θ)dθ ≤ λ

`1 like penalty

Equivalent to the Lasso if the parameter space is finite

the solution is still sparse

LARS-like path-following algorithm for solving the problem

works for specific features
unstable
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Our framework

Formulation

Look for the finite subset of feature that yields to the lowest
minimum empirical risk
The number of finite subset is still infinite but the ERM applies to a
finite number of features.

Notations

F the set of all possible finite subset of features
ϕ an element of F composed of d features {Φθj}di=1, with θ being
the feature parameter
For an optimal ϕ? with optimal parameters {θ?j }, the decision
function writes:

f (x) =
∑
j=1

wjΦθ?j
(x) = wTΦθ
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Optimization problem

Learning examples {xi , yi}ni=1

Formulation

min
ϕ∈F

min
w

n∑
i=1

L(yi ,w
TΦθ(xi )) + λΩ(w)

L(·, ·) convex and differentiable loss function
Ω(·) norm based sparsity-inducing regularizers
λ : trade-off hyperparameter

two-step optimization, bi-level optimization

ERM with finite feature set ϕ
optimization over the feature set
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Optimality conditions for Ω(w) = ‖w‖1

inner problem∑
i Φθj (xi )L

′(yi ,w
TΦθ(xi )) + λsign(wj) = 0 if wj 6= 0∣∣∑

i Φθj (xi )L
′(yi ,w

TΦθ(xi ))
∣∣ ≤ λ if wj = 0 and Φθ ∈ ϕ

full problem

∑
i Φθj (xi )L

′(yi ,w
TΦθj (xi )) + λsign(wj) = 0 if wj 6= 0∣∣∑

i Φθj (xi )L
′(yi ,w

TΦθ(xi ))
∣∣ ≤ λ if wj = 0 and Φθj ∈ ϕ∣∣∑

i Φ(xi )L
′(yi ,w

TΦθ(xi ))
∣∣ ≤ λ if Φ 6∈ ϕ

Intuition : a feature violating constraint in red also violates the
optimality condition of the inner problem with augmented feature
set ϕ ∪ Φ
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Remarks

Violating constraint feature

suppose w? solution of the inner problem with the feature set ϕ.
any Φ violating ∣∣∣∣∣∑

i

Φ(xi )L
′(yi ,w

?TΦθ(xi ))

∣∣∣∣∣ ≤ λ
would lead to a decrease of the objective function if added to ϕ.

Active set Algorithm

train with a finite set of feature ϕ
select one violating constraint φ and update ϕ : ϕ← ϕ ∪ φ
re-train
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Algorithm properties

For checking the optimality of the full problem, we have to be able
to solve

max

∣∣∣∣∣∑
i

Φ(xi )L
′(yi ,w

TΦθ(xi ))

∣∣∣∣∣
ε-approximate solution : if the inner problem can be solved exactly
and we can compute the above equation then the algorithm provides
an ε-approximate solution in finite time.
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Violating constraint features

A key point of the algorithm is the resolution of

max
Φ

∣∣∣∣∣∑
i

Φ(xi )L
′(yi ,w

TΦθ(xi ))

∣∣∣∣∣
Depending on L(·, ·) and the structure of Φθ, the problem can be
very difficult.

randomization, brute force, or clever search if applicable

sample some values of θ
select the feature that maximizes

∣∣∑
i Φ(xi )L′(yi ,wTΦθ(xi ))

∣∣
sub-optimal but efficient
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Algorithmic implementation

Randomization for feature searching

minimization of empirical risk + sparse regularizer for the inner
problem

fast proximal algorithm or alternate direction methods of multipliers

Instantiation with square hinge loss of the ADMM approach

min
w

max(0, 1− yΦw)T max(0, 1− yΦw) + λΩ(w)

variable splitting

minu,v,w max(0,u)T max(0,u) + λΩ(v)
u = 1− yΦw
v = w

decouples the influence of the loss and the regularizer in the
optimization problem.
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Algorithmic implementation : ADMM (2)

Lagrangian

L = max(0,u)T max(0,u) + λΩ(v) + αT (u− 1 + yΦw)

+βT (v −w) + ν
2‖u− 1 + yΦw‖2 + ν′

2 ‖v −w‖2

Iteration

minimization of the augmented Lagrangian wrt to each single primal
variable
update of the dual variable α, β

Steps :

linear system for w
proximal operator update for u related to the loss function
proximal operator update for v related to the regularizer

Nice points

simple and generic
convergence for inexact proximal operators
efficient
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Extensions to other paradigms

non-differentiable norm-based regularization term Ω(w). The
violating constraint condition becomes

Ω?

(∑
i

Φ(xi )L
′(yi ,w

TΦθj (xi ))

)
≤ λ

with Ω?(w) being the dual norm of Ω(w).

Multi-task framework with shared and specific norm based
regularizers for feature selection e.g `1 − `q mixed-norm whose dual
is `∞ − `q′

‖W‖1,q =
d∑

i=1

‖W·,t‖q
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Application to kernel and multiple kernel approximation

simple and efficient to kernel method : use explicit features if any.

Gaussian kernel k(x, x′)

k(x, x′) ≈
m∑
j=1

[cos(vTj x) cos(vTj x
′) + sin(vTj x) sin(vTj x

′)]

where {vj} are random vectors samples according to the FT of the
Gaussian kernel

Application in our framework :

sample several values of the Gaussian kernel bandwidth
for each value, draw direction vectors {vj}
for all bandwidth and direction vectors, compute the constraint
violation
select the pair of features violating the most their constraints.
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Experimental results

Gabor features for multiclass texture recognition problems

comparison with sampled parameters of feature extraction

Large scale approximated kernel machines

comparison with incomplete choleski decomposition

A. Rakotomamonjy joint work with R. Flamary and F. Yger () November 2011 15 / 19



Gabor feature for texture recognition

3 classes, 16× 16 patches from the texture image
increasing number of features and 1000 examples per class
approaches

GrFL : our method
fixed feat : pre-defined features through discretization
selected feat: Lasso with 3000 of the features visited by GrFL
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Gabor feature for texture recognition

increasing number of training samples with 81 Gabor features
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Lessons

learning with infinitely many cheaper than learning with many

do not sample parameters but take advantage of the continuous
parameters
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Large scale kernel machines

Gaussian kernel with explicit and selected feature maps

datasets : Adult and IJCNN1 (40k and 110k training examples)

sample kernel bandwidth and then sample vector direction

Adult IJCNN1

# feat GrFL GrFL-M IC GrFL GrFL-M IC
10 83.82 83.77 83.38 92.06 91.96 91.03
50 84.76 84.86 84.58 97.05 96.97 92.19

100 84.98 85.00 84.84 97.97 98.02 93.29
500 85.24 85.30 85.04 – – –

Adult IJCNN1
ratio GrFL GrFL-M IC GrFL GrFL-M IC
0.1 84.23 84.34 84.54 96.27 96.67 93.38
0.3 84.78 84.87 84.72 97.40 97.77 93.23
0.5 84.91 84.95 84.74 97.75 97.96 93.32
0.7 84.98 85.00 84.84 97.97 98.02 93.29

Better performances than Incomplete Choleski decomposition

Easy multiple Gaussian kernel
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Conclusions

Framework for learning with infinitely features that is generic to loss
functions and sparsity inducing regularizers

work pretty well from an empirical point of view

Questions

Theoretical guarantees when the algorithm stops at non-optimal
solution?
Are we sure that the selected features are “similar” to the true ones?
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