A Kernel Approache to Covariate Shift

Arthur Gretton

Gatsby Computational Neuroscience Unit

November 2011

Transfer learning and covariate shift

- Patterns \mathcal{X} , labels \mathcal{Y}
- Training: get $Z_{\rm tr}$ are $n_{\rm tr}$ pairs $(x^{\rm tr}, y^{\rm tr})$ from ${\sf P}_{\rm tr}$
- Test: get Z_{te} are n_{te} pairs $(x^{\text{te}}, y^{\text{te}})$ from P_{te}
- Predict on P_{te} given data from P_{tr}
- Examples:
 - Brain computer interfaces
 - Spam detection
 - Medical diagnosis

Transfer learning and covariate shift

- Patterns \mathcal{X} , labels \mathcal{Y}
- Training: get $Z_{\rm tr}$ are $n_{\rm tr}$ pairs $(x^{\rm tr}, y^{\rm tr})$ from ${\sf P}_{\rm tr}$
- Test: get Z_{te} are n_{te} pairs $(x^{\text{te}}, y^{\text{te}})$ from P_{te}
- Predict on P_{te} given data from P_{tr}
- Examples:
 - Brain computer interfaces
 - Spam detection
 - Medical diagnosis

Does this make sense?

Transfer learning and covariate shift

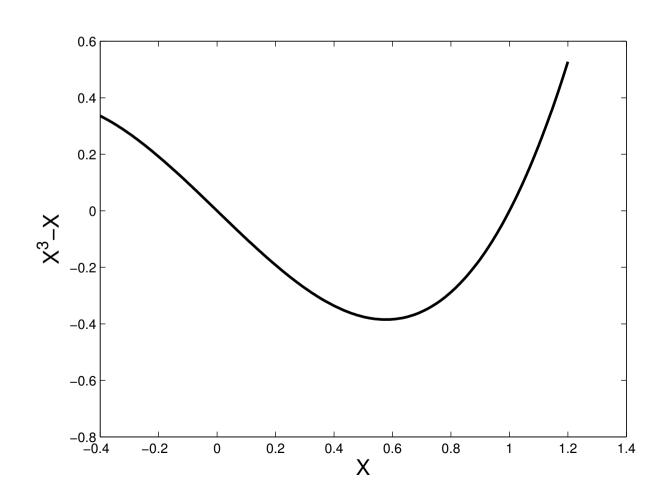
- Patterns \mathcal{X} , labels \mathcal{Y}
- Training: get $Z_{\rm tr}$ are $n_{\rm tr}$ pairs $(x^{\rm tr}, y^{\rm tr})$ from ${\sf P}_{\rm tr}$
- Test: get Z_{te} are n_{te} pairs $(x^{\text{te}}, y^{\text{te}})$ from P_{te}
- Predict on P_{te} given data from P_{tr}
- Examples:
 - Brain computer interfaces
 - Spam detection
 - Medical diagnosis
- Assumption: $P_{tr}(x,y) = P(y|x)P_{tr}(x)$ and $P_{te}(x,y) = P(y|x)P_{te}(x)$

Conditional probs unchanged: covariate shift

A toy example

- Toy data [Shimodaira, 2000]
 - $\mathbf{P}_{tr}(x) \sim \mathcal{N}(0.5, 0.5^2),$
 - $\mathbf{P_{te}}(x) \sim \mathcal{N}(0, 0.3^2)$

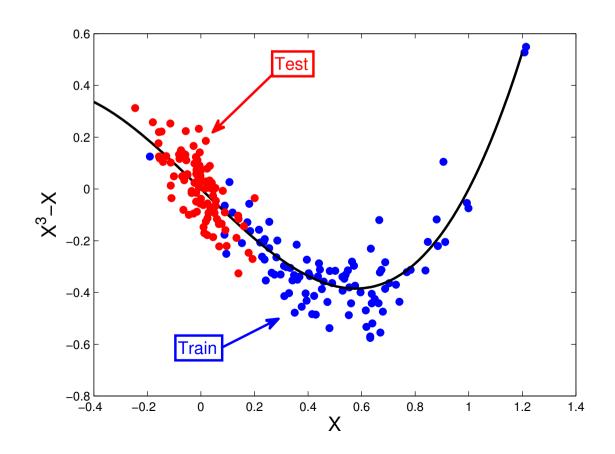
- $y = -x + x^3 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.3^2)$
- Linear regression



A toy example

- Toy data [Shimodaira, 2000]
 - $\mathbf{P}_{tr}(x) \sim \mathcal{N}(0.5, 0.5^2),$
 - $\mathbf{P_{te}}(x) \sim \mathcal{N}(0, 0.3^2)$

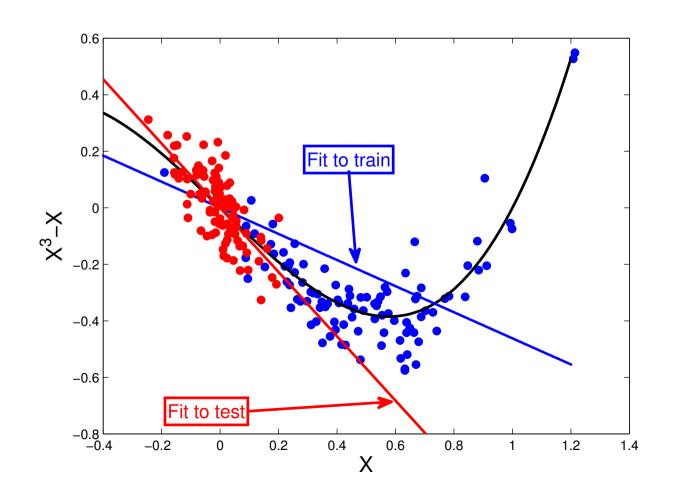
- $y = -x + x^3 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.3^2)$
- Linear regression



A toy example

- Toy data [Shimodaira, 2000]
 - $\mathbf{P}_{tr}(x) \sim \mathcal{N}(0.5, 0.5^2),$
 - $\mathbf{P_{te}}(x) \sim \mathcal{N}(0, 0.3^2)$

- $y = -x + x^3 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.3^2)$
- Linear regression



The solution procedure

• Classical setting: (regularized) expected risk

$$R[\mathbf{P}, l(x, y, \theta)] = \mathbf{E}[l(x, y, \theta)] + \lambda \Omega[\theta]$$

- Loss $l(x, y, \theta)$, eg log $\mathbf{P}(y|x, \theta)$
- Minimize over θ

The solution procedure

• Classical setting: (regularized) expected risk

$$R[\mathbf{P}, l(x, y, \theta)] = \mathbf{E}[l(x, y, \theta)] + \lambda\Omega[\theta]$$

- Loss $l(x, y, \theta)$, eg log $\mathbf{P}(y|x, \theta)$
- Minimize over θ
- Covariate shift setting:

$$R[\mathbf{P_{te}}, l(x, y, \theta)] = \mathbf{E_{P_{te}}} [l(x, y, \theta)] + \lambda \Omega[\theta]$$
$$= \mathbf{E_{P_{tr}}} [\beta(x, y)l(x, y, \theta)] + \lambda \Omega[\theta]$$

The solution procedure

• Classical setting: (regularized) expected risk

$$R[\mathbf{P}, l(x, y, \theta)] = \mathbf{E}[l(x, y, \theta)] + \lambda\Omega[\theta]$$

- Loss $l(x, y, \theta)$, eg log $\mathbf{P}(y|x, \theta)$
- Minimize over θ
- Covariate shift setting:

$$R[\mathbf{P_{te}}, l(x, y, \theta)] = \mathbf{E_{P_{te}}} [l(x, y, \theta)] + \lambda \Omega[\theta]$$
$$= \mathbf{E_{P_{tr}}} [\beta(x, y)l(x, y, \theta)] + \lambda \Omega[\theta]$$

• Importance weighting:

$$\mathbf{E}_{\mathsf{P_{te}}}\left[l(x,y,\theta)\right] = \mathbf{E}_{\mathsf{P_{tr}}}\left[\underbrace{\frac{\mathsf{P_{te}}(x,y)}{\mathsf{P_{tr}}(x,y)}}_{:=\beta_{\mathrm{imp}}(x,y)}l(x,y,\theta)\right] \quad \text{provided} \quad \mathsf{P_{te}} \ll \mathsf{P_{tr}}$$

$$:=\beta_{\mathrm{imp}}(x,y)$$

• Variance of importance weighted risk [Robert and Casella, 2004]

$$\operatorname{var}_{\mathbf{P}_{\operatorname{tr}}} \left(l(x, y, \theta) \frac{\mathbf{P}_{\operatorname{te}}(x, y)}{\mathbf{P}_{\operatorname{tr}}(x, y)} \right)$$

$$= \mathbf{E}_{\mathbf{P}_{\operatorname{tr}}} \left[l^{2}(x, y, \theta) \frac{\mathbf{P}_{\operatorname{te}}^{2}(x, y)}{\mathbf{P}_{\operatorname{tr}}^{2}(x, y)} \right] - (\mathbf{E}_{\mathbf{P}_{\operatorname{te}}} \left[l(x, y, \theta) \right])^{2}$$

• Variance of importance weighted risk [Robert and Casella, 2004]

$$\operatorname{var}\left(l(x,y,\theta)\frac{\mathbf{P_{te}}(x,y)}{\mathbf{P_{tr}}(x,y)}\right)$$

$$= \mathbf{E_{P_{tr}}}\left[l^{2}(x,y,\theta)\frac{\mathbf{P_{te}}^{2}(x,y)}{\mathbf{P_{tr}}^{2}(x,y)}\right] - R^{2}[\mathbf{P_{te}},\theta,l(x,y,\theta)]$$

$$= \mathbf{E_{P_{te}}}\left[l^{2}(x,y,\theta)\frac{\mathbf{P_{te}}(x,y)}{\mathbf{P_{tr}}(x,y)}\right] - R^{2}[\mathbf{P_{te}},\theta,l(x,y,\theta)]$$

• Variance of importance weighted risk [Robert and Casella, 2004]

$$\operatorname{var}\left(l(x, y, \theta) \frac{\mathbf{P_{te}}(x, y)}{\mathbf{P_{tr}}(x, y)}\right)$$

$$= \mathbf{E_{P_{tr}}}\left[l^{2}(x, y, \theta) \frac{\mathbf{P_{te}}^{2}(x, y)}{\mathbf{P_{tr}}^{2}(x, y)}\right] - R^{2}[\mathbf{P_{te}}, \theta, l(x, y, \theta)]$$

$$= \mathbf{E_{P_{te}}}\left[l^{2}(x, y, \theta) \frac{\mathbf{P_{te}}(x, y)}{\mathbf{P_{tr}}(x, y)}\right] - R^{2}[\mathbf{P_{te}}, \theta, l(x, y, \theta)]$$

$$\stackrel{<}{\underset{< B}{\overset{\sim}{\longrightarrow}}}$$

• Variance of importance weighted risk [Robert and Casella, 2004]

$$\operatorname{var}\left(l(x,y,\theta)\frac{\mathbf{P_{te}}(x,y)}{\mathbf{P_{tr}}(x,y)}\right)$$

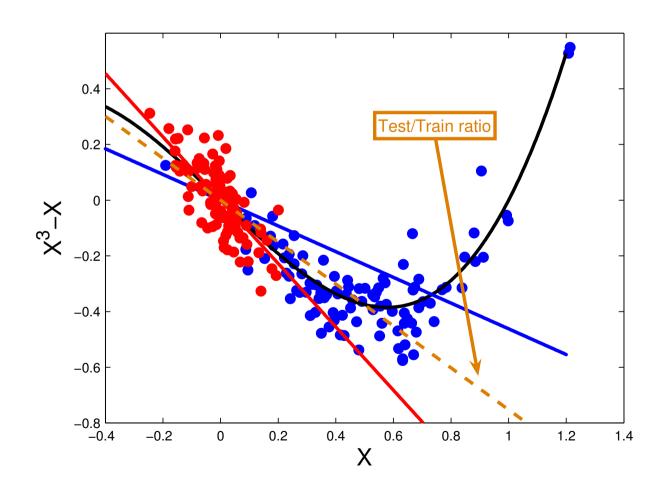
$$= \mathbf{E_{P_{tr}}}\left[l^{2}(x,y,\theta)\frac{\mathbf{P_{te}}^{2}(x,y)}{\mathbf{P_{tr}}^{2}(x,y)}\right] - R^{2}[\mathbf{P_{te}},\theta,l(x,y,\theta)]$$

$$= \mathbf{E_{P_{te}}}\left[l^{2}(x,y,\theta)\frac{\mathbf{P_{te}}(x,y)}{\mathbf{P_{tr}}(x,y)}\right] - R^{2}[\mathbf{P_{te}},\theta,l(x,y,\theta)]$$

$$\leq B$$

 \bullet P_{tr} should have heavier tails than P_{te}

- Ridge regression, linear kernel
- Importance weighting improves performance



Alternatives to density estimation

- Difficulties with direct density estimation
 - Empirical P_{tr} and P_{te} difficult for structured/high dimensional data
 - Variance can be large if empirical P_{te}/P_{tr} large

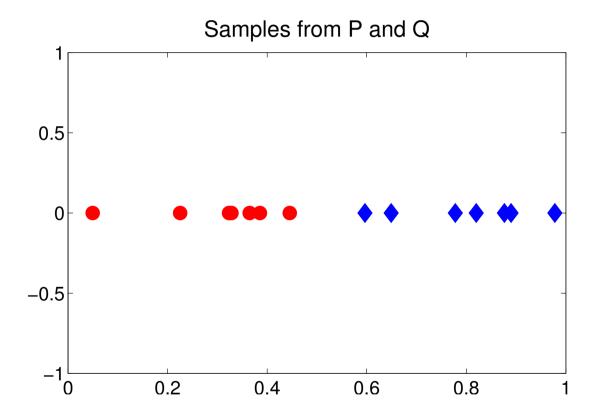
Alternatives to density estimation

- Difficulties with direct density estimation
 - Empirical P_{tr} and P_{te} difficult for structured/high dimensional data
 - Variance can be large if empirical P_{te}/P_{tr} large
- Some other reweighting approaches:
 - Minimize classification error of $P_{\rm tr}$ vs $P_{\rm te}$ [Qin, 1998, Cheng and Chu, 2004, Bickel et al., 2009]
 - Minimize KL divergence between βP_{tr} and P_{te} (KLIEP) [Sugiyama et al., 2008]
 - Ratio Pte/Ptr via least-squares function fitting [Kanamori et al., 2009]
 - Minimize Maximum Mean Discrepancy (MMD) between βP_{tr} and P_{te}

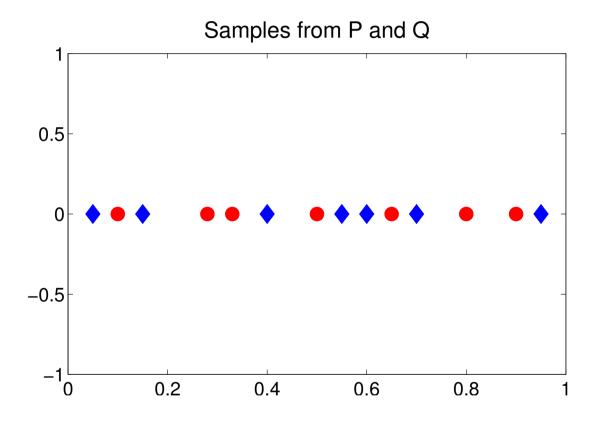
 [Huang et al., 2007, Gretton et al., 2008]

Kernel distribution metric for transfer learning

• Are P and Q different?

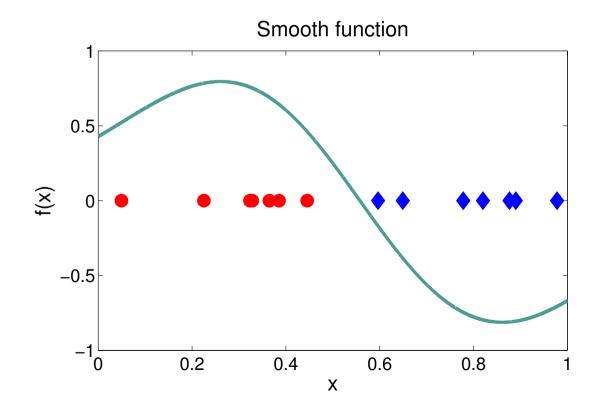


• Are P and Q different?



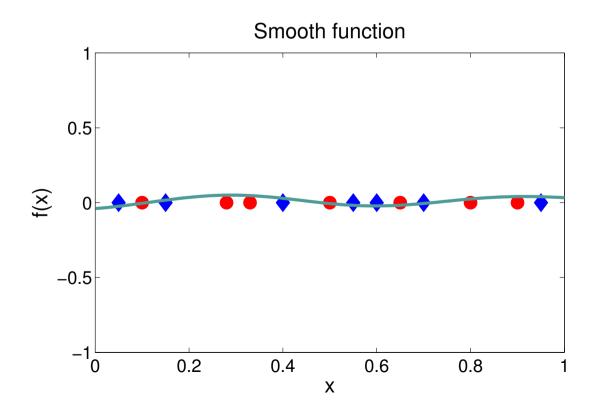
• Maximum mean discrepancy: smooth function for P vs Q

$$\mathrm{MMD}(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$



• Maximum mean discrepancy: smooth function for P vs Q

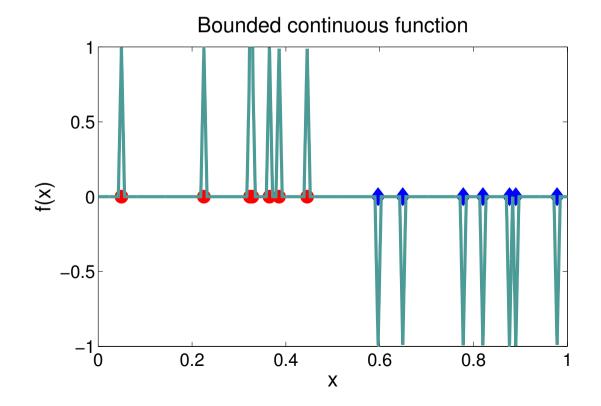
$$\mathrm{MMD}(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$



Function Showing Difference in Distributions

• What if the function is **not smooth**?

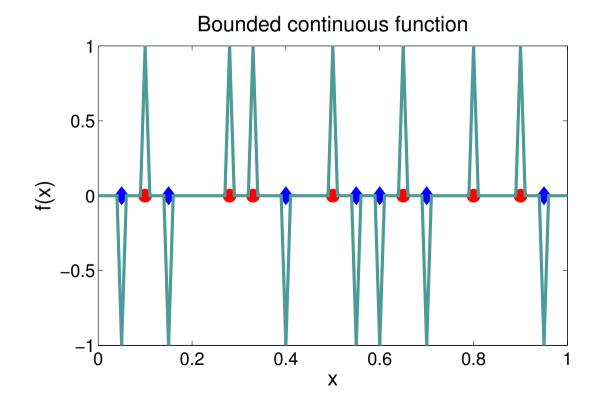
$$\mathrm{MMD}(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$



Function Showing Difference in Distributions

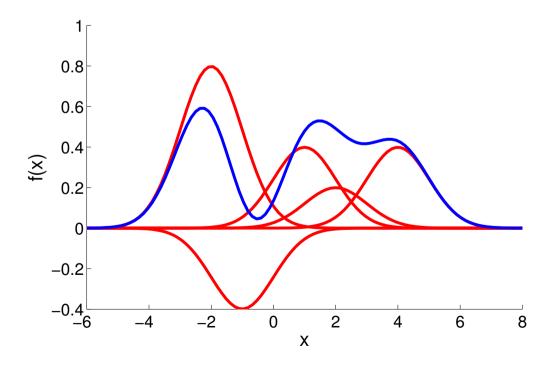
• What if the function is **not smooth**?

$$\mathrm{MMD}(\mathbf{P}, \mathbf{Q}; F) := \sup_{f \in F} \left[\mathbf{E}_{\mathbf{P}} \mathbf{f}(\mathsf{x}) - \mathbf{E}_{\mathbf{Q}} \mathbf{f}(\mathsf{y}) \right].$$



Constructing the smooth function

- \mathcal{F} RKHS from \mathcal{X} to \mathbb{R} with positive definite kernel $k(x_i, x_j)$
- F a ball in F
- Example: $f(x) = \sum_{i=1}^{m} \alpha_i k(x_i, x)$ for arbitrary $m \in \mathbb{N}$, $\alpha_i \in \mathbb{R}$, $x_i \in \mathcal{X}$.



• Reweight training points to minimize MMD: Kernel Mean Matching (KMM)

minimize
$$\text{MMD}(\mathsf{P_{te}}(x), \beta(x)\mathsf{P_{tr}}(x); F)$$

subject to $\beta(x) \geq 0$ and $\mathbf{E_{\mathsf{P_{tr}}}}[\beta(x)] = 1$.

• If $P_{te} \ll P_{tr}$, characteristic kernel, solution is $P_{te}(x) = \beta_{imp}(x)P_{tr}(x)$

• Reweight training points to minimize MMD: Kernel Mean Matching (KMM)

minimize
$$\text{MMD}(\mathsf{P_{te}}(x), \beta(x)\mathsf{P_{tr}}(x); F)$$

subject to $\beta(x) \geq 0$ and $\mathbf{E_{\mathsf{P_{tr}}}}[\beta(x)] = 1$.

- If $P_{te} \ll P_{tr}$, characteristic kernel, solution is $P_{te}(x) = \beta_{imp}(x)P_{tr}(x)$
- Empirical:

$$\min_{\beta} \left(\frac{1}{n_{\text{tr}}^2} \beta^{\top} K \beta - \frac{2}{n_{\text{tr}}^2} \kappa^{\top} \beta \right) + \text{const.}$$

• Reweight training points to minimize MMD: Kernel Mean Matching (KMM)

minimize
$$\text{MMD}(\mathsf{P_{te}}(x), \beta(x)\mathsf{P_{tr}}(x); F)$$

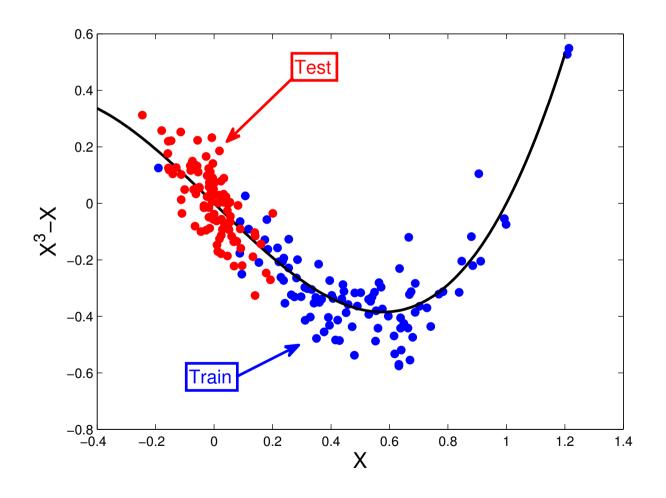
subject to $\beta(x) \geq 0$ and $\mathbf{E_{P_{tr}}}[\beta(x)] = 1$.

- If $P_{te} \ll P_{tr}$, characteristic kernel, solution is $P_{te}(x) = \beta_{imp}(x)P_{tr}(x)$
- Empirical:

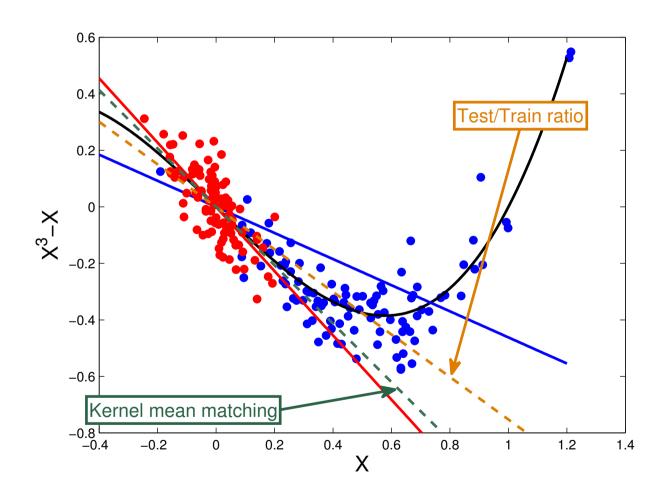
$$\min_{\beta} \left(\frac{1}{n_{\text{tr}}^2} \beta^\top K \beta - \frac{2}{n_{\text{tr}}^2} \kappa^\top \beta \right) + \text{const.}$$

$$\text{subject to } \beta_i \in [0, B] \quad \text{and} \quad \left| \sum_{i=1}^{n_{\text{tr}}} \beta_i - n_{\text{tr}} \right| \leq \sqrt{n_{\text{tr}}} \epsilon.$$

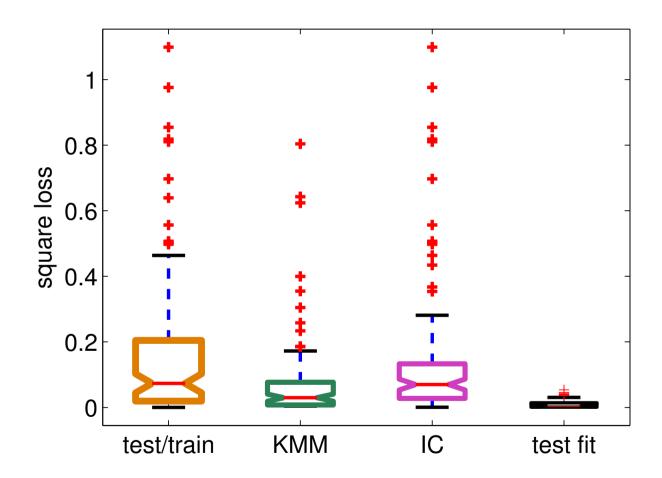
• Compare KMM and importance sampling



• Compare KMM and importance sampling



• Compare KMM and importance sampling



Reweighting by classification

- Use train/test classification error to reweight [Qin, 1998, Cheng and Chu, 2004, Bickel et al., 2009]
- $P(S|x, \theta_{\text{shift}})$ classifies training (s=1) vs test (s=0)
- Importance ratio:

$$\frac{\mathbf{P_{te}}(x_i^{tr})}{\mathbf{P_{tr}}(x_i^{tr})} = \frac{\mathbf{P}(s=1)}{\mathbf{P}(s=0)} \left(\mathbf{P}^{-1} \left(s = 1 | x_i^{tr}, \theta_{\text{shift}} \right) - 1 \right)$$

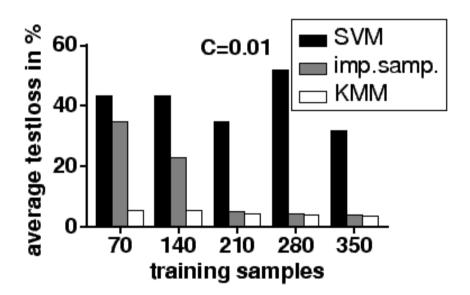
• Learn two classifiers: train vs test and covariate to label

Breast Cancer data

- Gaussian kernel $\exp(-|x_i x_j|^2/(2\sigma))$ for KMM and SVN, $\sigma = 5$
- Performance vs C
 - Small $C \rightarrow$ prioritize smoothness
- Selection procedure:
 - Random training/test split
 - Training set from 10% 50% of test
 - $-P(s_i = 1|x_i) \propto \exp(-0.05||x_i \overline{x}||^2)$

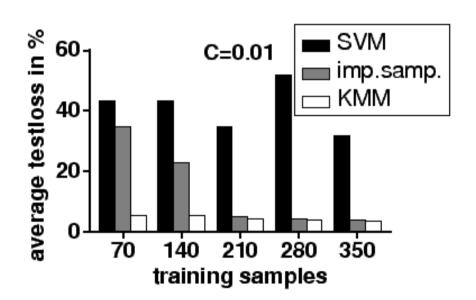
Breast Cancer data

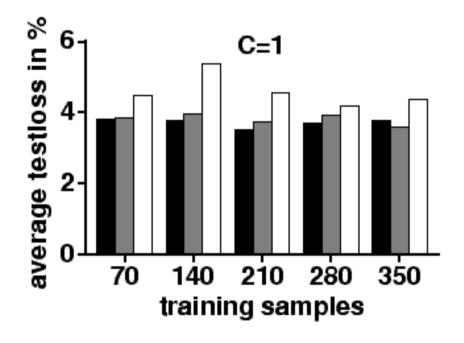
- Reweighting greatly improves performance
- KMM outperforms IS at small sample sizes



Breast Cancer data

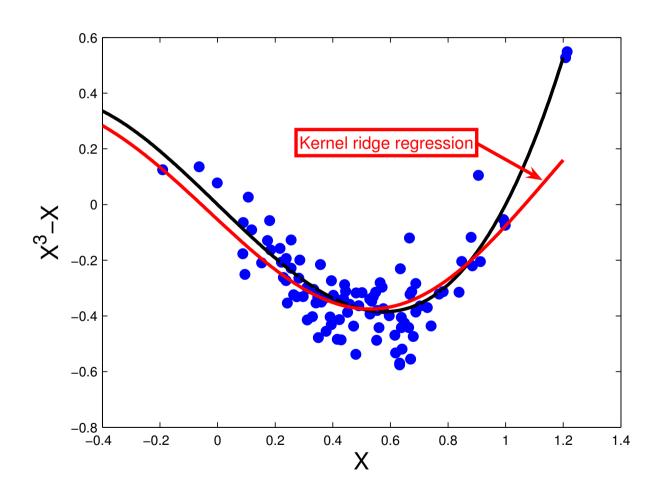
- KMM slightly decreases performance
- IS does not help



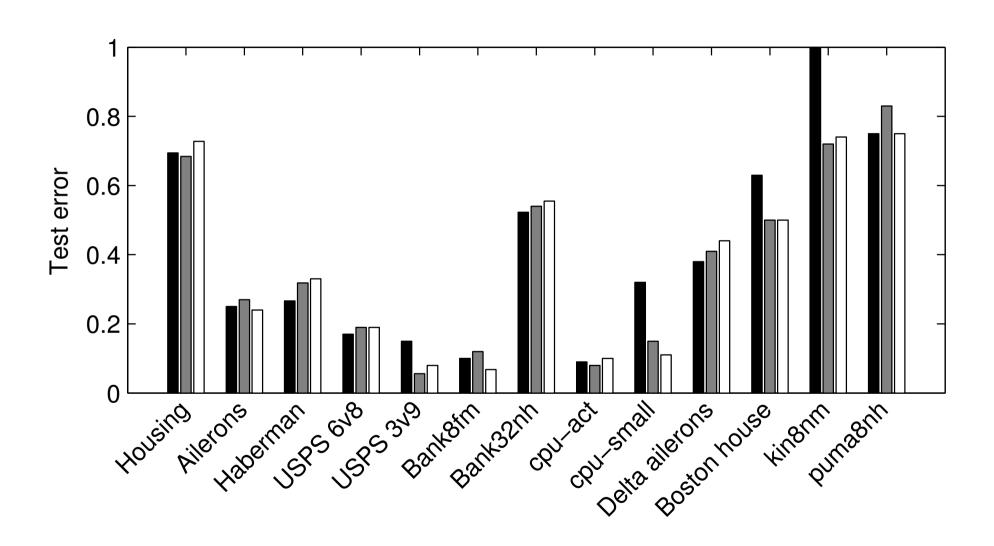


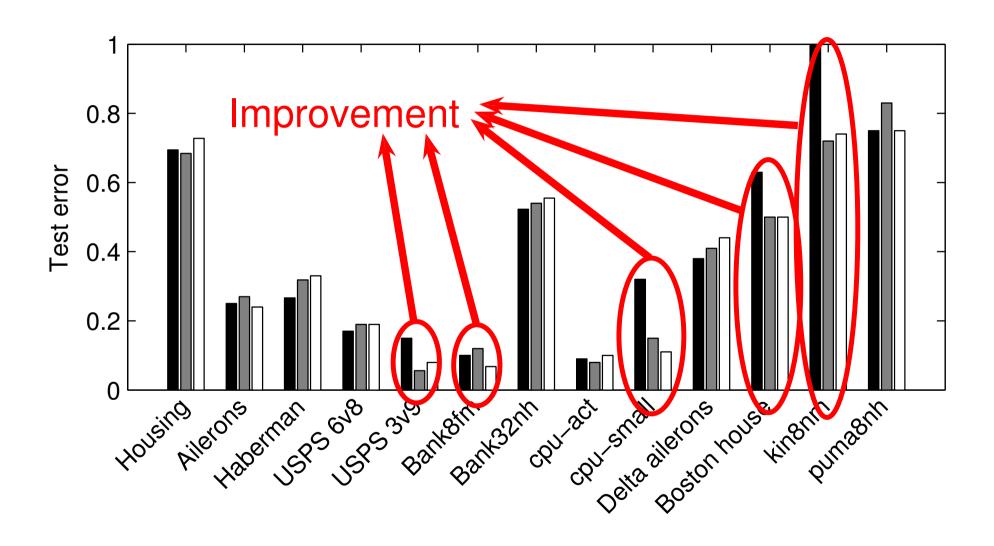
Toy example revisited

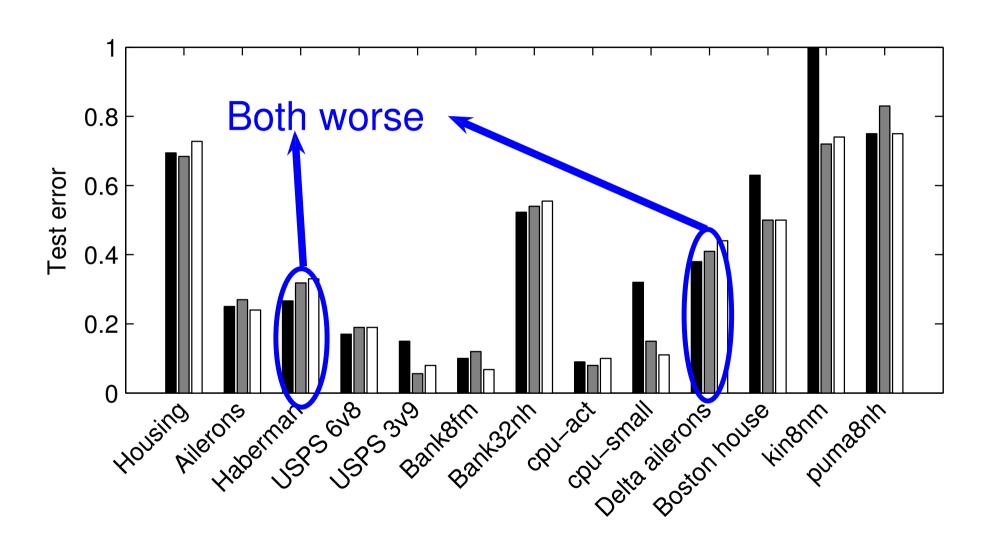
• Kernel ridge regression result

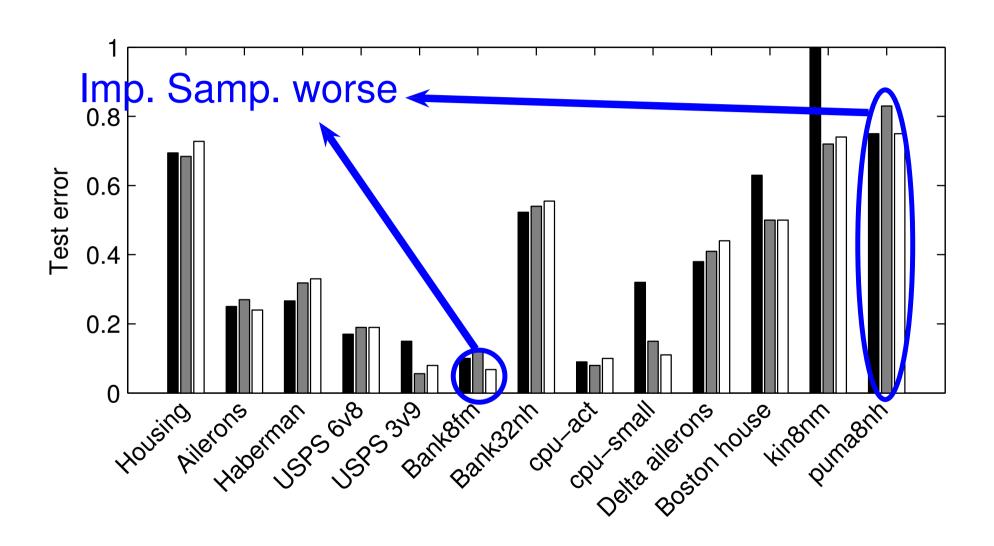


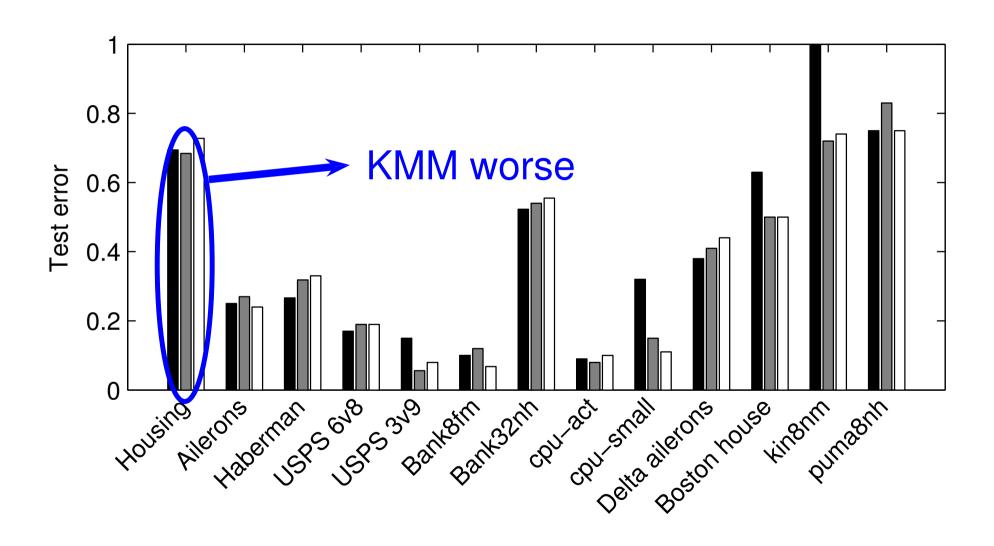
- Regression and classification
- Sampling scheme: training data missing at random
 - Sampling by Gaussian distribution on first principal component
- Cross validate on unweighted training set for C and σ
- Same σ for classifier/regressor and KMM

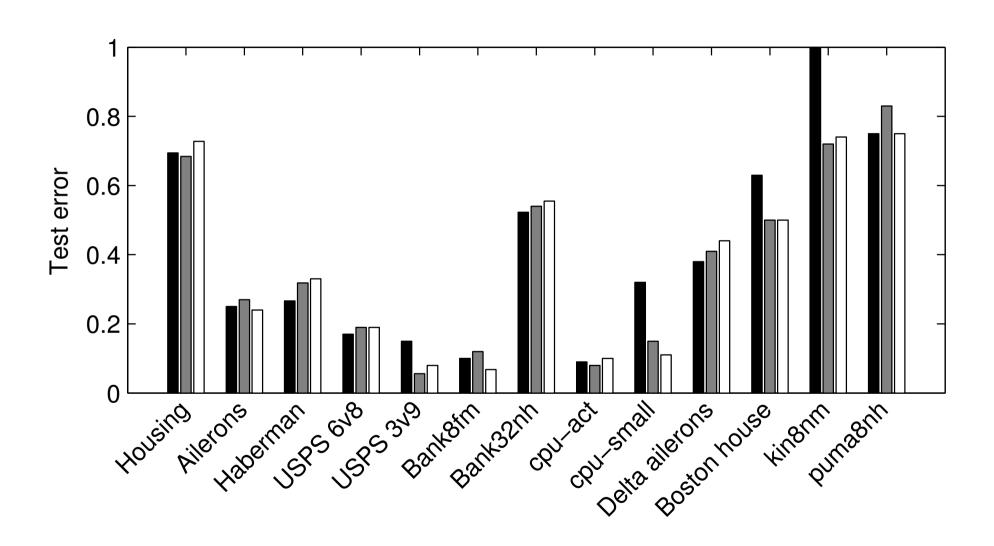












Conclusion

- KMM: perform covariate shift without density estimation
- Large performance advantage for "simple" learning algorithms
- Mixed results for powerful learning algorithms
- Model selection remains an issue

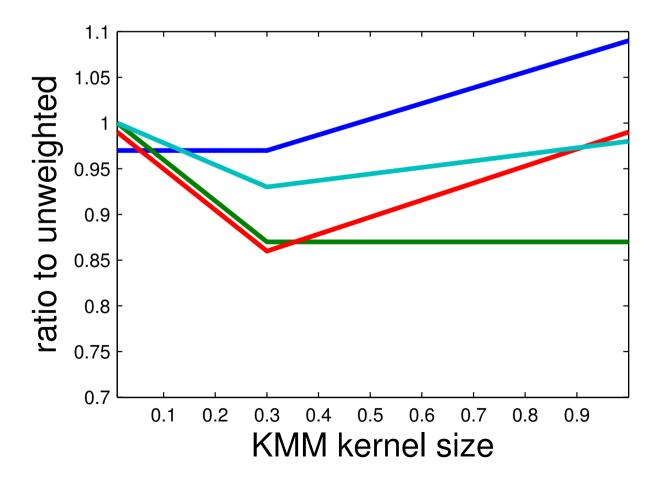
Acknowledgements

- Co-authors on KMM papers:
 - Karsten Borgwardt
 - Jiayuan Huang
 - Marcel Schmittful
 - Bernhard Schölkopf
 - Alex Smola
- Discussions
 - Paul von Bünau
 - Corinna Cortes
 - Klaus-Robert Müller
 - Masashi Sugiyama

Questions?

Further work: model selection

- Model selection for covariate shift
- Results from [Sugiyama et al., 2008]
- Data have 18-21 dimensions



Further work: model selection

• Model selection for covariate shift

- Some strategies [Bickel et al., 2009]
 - Systematic drift: can be learned [Bickel et al., 2009]
 - Cross validation to obtain error for current β estimate [Sugiyama et al., 2008, Kanamori et al., 2009]
 - Classifier of training vs test: again, cross-validate [Bickel et al., 2009]
 - Supremum of MMD over set of kernels? [Sriperumbudur et al., 2010]
- Does knowing something about the learning problem help?

Further work: model selection

• Model selection for covariate shift

- Some strategies [Bickel et al., 2009]
 - Systematic drift: can be learned [Bickel et al., 2009]
 - Cross validation to obtain error for current β estimate [Sugiyama et al., 2008, Kanamori et al., 2009]
 - Classifier of training vs test: again, cross-validate [Bickel et al., 2009]
 - Supremum of MMD over set of kernels? [Sriperumbudur et al., 2010]
- Does knowing something about the learning problem help?
- Model selection for weighted learning: bias for unweighted? [Kanamori et al., 2009]

Bibliography

References

- S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under covariate shift. JMLR, 10:2137–2155, 2009.
- K. F. Cheng and C. K. Chu. Semiparametric density estimation under a two-sample density ratio model. Bernoulli, 10(4):583-604, 2004.
- R. M. Dudley. Real analysis and probability. Cambridge University Press, Cambridge, UK, 2002.
- R. Fortet and E. Mourier. Convergence de la réparation empirique vers la réparation théorique. Ann. Scient. École Norm. Sup., 70:266-285, 1953.
- K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. In *Advances in Neural Information Processing Systems* 20, pages 489–496, Cambridge, MA, 2008. MIT Press.
- A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel method for the two-sample-problem. In Advances in Neural Information Processing Systems 19, pages 513–520, Cambridge, MA, 2007. MIT Press.
- A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. Dataset shift in machine learning. In J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, editors, *Covariate Shift and Local Learning by Distribution Matching*, pages 131–160, Cambridge, MA, 2008. MIT Press.
- J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf. Correcting sample selection bias by unlabeled data. In *Advances in Neural Information Processing Systems* 19, Cambridge, MA, 2007. MIT Press.
- T. Kanamori, S. Hido, , and M Sugiyama. A least-squares approach to direct importance estimation. *Journal of Machine Learning Research*, 10:1391–1445, 2009.

• Characteristic: MMD a metric (MMD = 0 iff P = Q) [NIPS07b, COLT08]

- Characteristic: MMD a metric (MMD = 0 iff P = Q) [NIPS07b, COLT08]
- Translation invariant kernels: k(x,y) = k(x-y)

- Characteristic: MMD a metric (MMD = 0 iff P = Q) [NIPS07b, COLT08]
- Translation invariant kernels: k(x,y) = k(x-y)
- Bochner's theorem:

$$k(x) = \int_{\mathbb{R}^d} e^{-ix^{\top}\omega} d\Lambda(\omega)$$

 $-\Lambda$ finite non-negative Borel measure

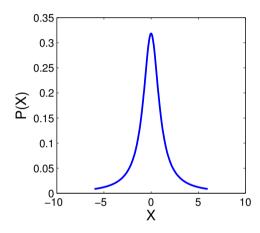
- Characteristic: MMD a metric (MMD = 0 iff P = Q) [NIPS07b, COLT08]
- Translation invariant kernels: k(x,y) = k(x-y)
- Bochner's theorem:

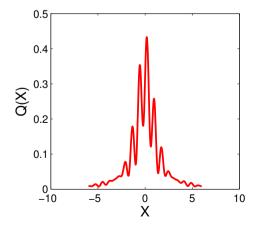
$$k(x) = \int_{\mathbb{R}^d} e^{-ix^{\top}\omega} d\Lambda(\omega)$$

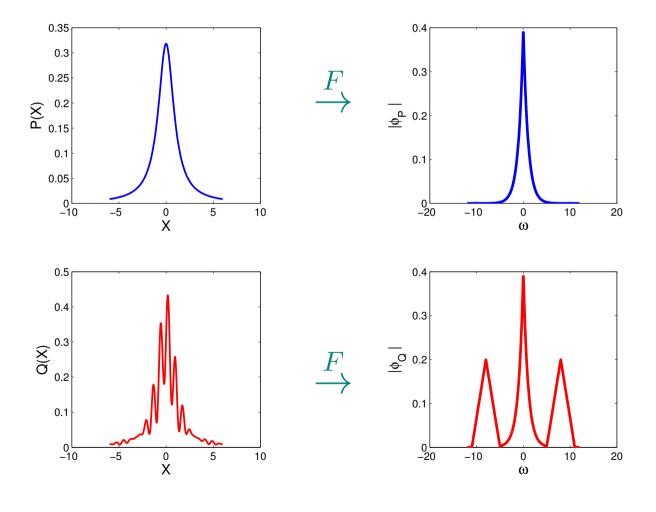
- $-\Lambda$ finite non-negative Borel measure
- Fourier representation of MMD:

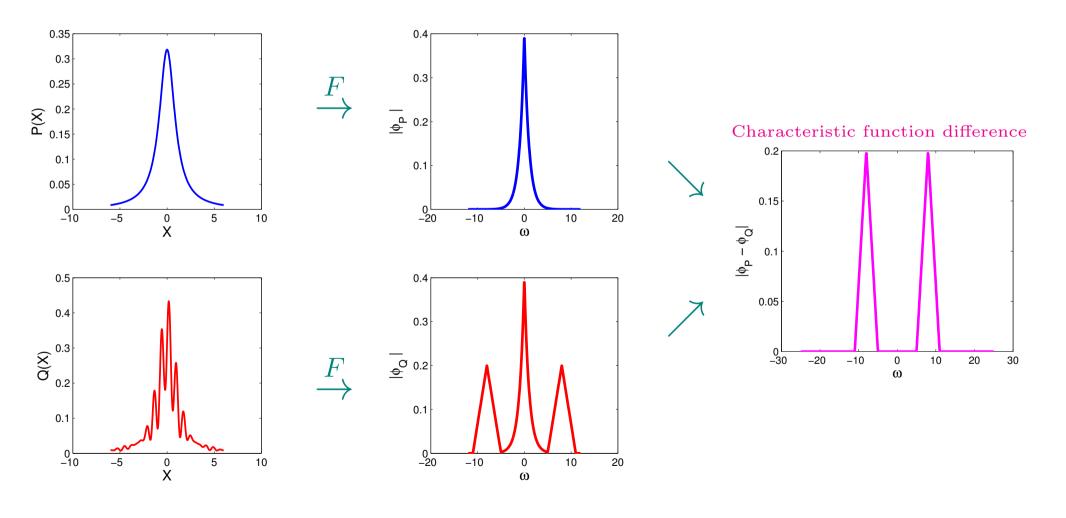
$$\mathrm{MMD}(\mathbf{P}, \mathbf{Q}; F) := \left\| \left[\left(\bar{\phi}_{\mathbf{P}} - \bar{\phi}_{\mathbf{Q}} \right) \Lambda \right]^{\vee} \right\|_{\mathcal{F}}$$

- $-\phi_{\mathbf{P}}$ characteristic function of \mathbf{P}
- f^{\wedge} is Fourier transform, f^{\vee} is inverse Fourier transform
- $-\mu_x := \int k(\cdot, x) d\mathbf{P}(x)$





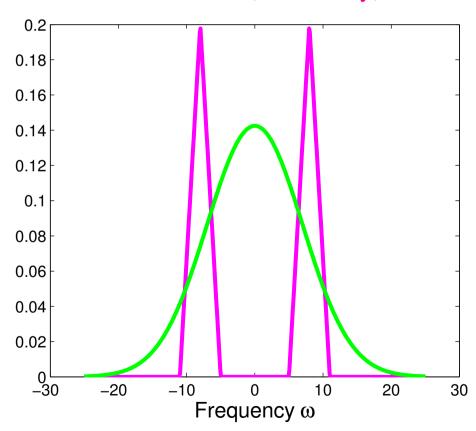


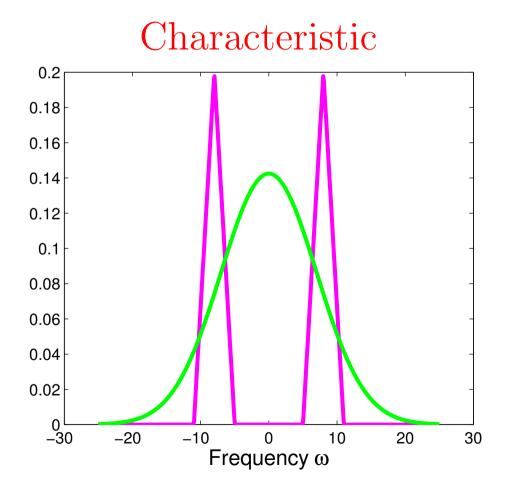


• Example: P differs from Q at (roughly) one frequency

Gaussian kernel

Difference $|\phi_P - \phi_Q|$

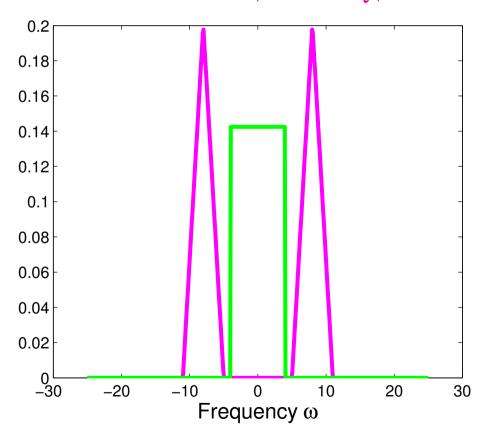


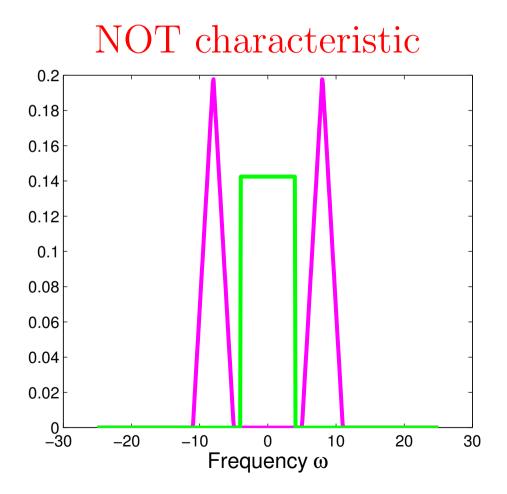


• Example: P differs from Q at (roughly) one frequency

Sinc kernel

Difference $|\phi_P - \phi_Q|$

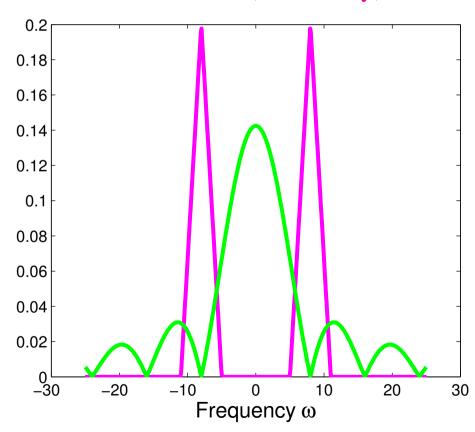


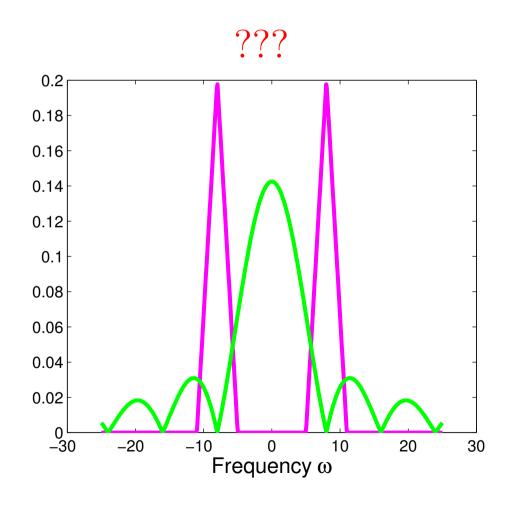


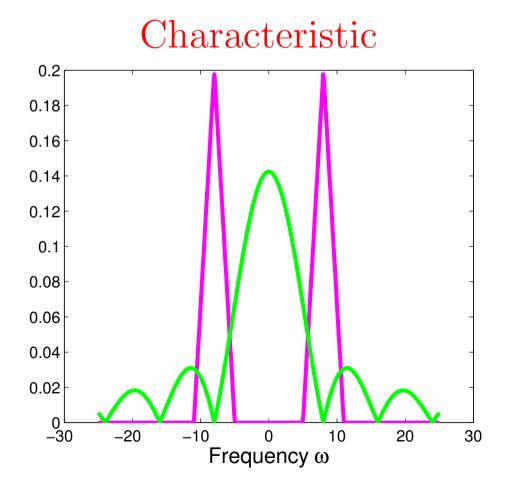
• Example: P differs from Q at (roughly) one frequency

B-Spline kernel

Difference $|\phi_P - \phi_Q|$







- Characteristic kernel: (MMD = 0 iff P = Q) [NIPSO7b, COLTO8]
- Main theorem: k characteristic if and only if $\operatorname{supp}(\Lambda) = \mathbb{R}^d$ [COLTO8]

- Characteristic kernel: (MMD = 0 iff P = Q) [NIPSO7b, COLTO8]
- Main theorem: k characteristic if and only if $\operatorname{supp}(\Lambda) = \mathbb{R}^d$ [COLTOS]
 - Corollary: continuous, compactly supported k characteristic

- Characteristic kernel: (MMD = 0 iff P = Q) [NIPSO7b, COLTO8]
- Main theorem: k characteristic if and only if $\operatorname{supp}(\Lambda) = \mathbb{R}^d$ [COLTO8]
 - Corollary: continuous, compactly supported k characteristic
- Alternative property: continuous, strictly P.D., includes NON-translation invariant [COLT09?]

$$k(x,y) = e^{\sigma x^{\mathsf{T}}y}, \ \sigma > 0$$

- Characteristic kernel: (MMD = 0 iff P = Q) [NIPSO7b, COLTO8]
- Main theorem: k characteristic if and only if $\operatorname{supp}(\Lambda) = \mathbb{R}^d$ [COLTO8]
 - Corollary: continuous, compactly supported k characteristic
- Alternative property: continuous, strictly P.D., includes NON-translation invariant [COLT09?]
- Similar reasoning wherever extensions of Bochner's theorem exist: [NIPS08a]
 - Locally compact Abelian groups (periodic domains)
 - Compact, non-Abelian groups (orthogonal matrices)
 - The semigroup \mathbb{R}_n^+ (histograms)