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Transter learning and covariate shift

Patterns X', labels )Y
Training: get Zi, are ni, pairs (a:tr, ytr) from Py,
Test: get Zi are n. pairs (2", y*®) from Py,

Predict on P;. given data from Py,

Examples:
— Brain computer intertfaces
— Spam detection

— Medical diagnosis
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Transter learning and covariate shift

Patterns X', labels )Y
Training: get Zi, are ny, pairs (z%,y") from Py,
Test: get Zi are n. pairs (2", y*®) from Py,

Predict on P;. given data from Py,

Examples:
— Brain computer intertfaces
— Spam detection

— Medical diagnosis

Assumption: P (x,y) = P(y|z)P () and Pie(z,y) = P(y|x)Pie(x)

Conditional probs unchanged: covariate shitt




A toy example

e Toy data [shimodaira, 2000]
-~ Pu(x) ~ N(0.5,0.5%),
~ Pie(z) ~ N (0,0.3%)

o y=—x+ 23 + ¢, where
e ~ N(0,0.3?)

e Linear regression
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A toy example

e Toy data [shimodaira, 2000]
~ Py () ~ N(0.5,0.52),
— Pio() ~ N(0,0.32)

o y=—x+ 23 + ¢, where
e ~ N(0,0.3?)

e Linear regression
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A toy example

e Toy data [shimodaira, 2000]
~ Py () ~ N(0.5,0.52),
— Pio() ~ N(0,0.32)

o y=—x+ 23 + ¢, where
e ~ N(0,0.3?)

e Linear regression

Fit to train

Fit to test
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The solution procedure

e Classical setting: (regularized) expected risk
R[P,l(z,y,0)] = E|l(z,y,0)] + \2[0]

— Loss l(x,y,0), eg —log P(y|z, 0)

— Minimize over 6
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The solution procedure

e Classical setting: (regularized) expected risk
R[P,l(z,y,0)] = E[l(z,y,0)] + AQ2[0]

— Loss I(z,y,0), eg —log P(y|z, 0)
— Minimize over 6

e Covariate shift setting:

B[P, l(z,y,0)] = Ep, [l(z,y,0)] + AQ[0]
— EPtr [5(377 y)l(xa Y, (9)] + )‘Q[e]

e Importance weighting:

Pte (ZC,
Ptr (Qf,

-~

Epte [l(x7 y’ 9)] — Eptr ('CC? y7 9) prOVided Pte << PtI‘

y)
y)f
)

::Bimp(xay



Importance weighting

e Variance of importance weighted risk mobertamd -caseita, 2aos)

Pie(x,
varp, . <l(:c,y,9) te(® y))

Ptr (ZC, y)
PtGQ(xa y)
Ptr2(m7 y)

B [mm, ).0) ] ~ (Ep, [I(z,9,0)))’



Importance weighting

e Variance of importance weighted risk mobertamd -caseita, 2aos)

var <l(m, g, ) Dtel® y)>

Pu(z,y)
Pio?(, y)
Ptr2<337 y)
Pie(z,y)
Pu(z,y)

— EPtr l2($7y79) ] _ R2[Pt6797l($7y79)]

— EPte Z2(£B,y,6)) ] o RQ[Pte,H,l<ZIZ‘,y,6)]



Importance weighting

e Variance of importance weighted risk mobertamd -caseita, 2aos)

ez

- 2 . Pte ( y) R »Y T
= Ep,, [l ( v Y, (9) P, 2 (337 y)] R [Ptea 0, l( Y5 9)]
)

Pie(,
— EPte [ZZ(xv Y, (9) Pz E z)} R2[Ptea (97 Z(ZE, Y, (9)]

<B

var <l(x, Yy, 0)
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Importance weighting

e Variance of importance weighted risk mobertamd -caseita, 2aos)

var <l(m, g, 0) el y)>

Ptr (I, y)

Pte( y)] 2
— Ep, |I?(z,y,0 — R%[P.0,1(x,y,0
Ptr[ ( y )Ptr (-’Jj,y) [ t ( y )]
Pie(z,y)
2 t ’ 2
— Pea 3 v Y
Ep,, |/ =005, 1 7y)J R2[Py..0,1(z,y,0)
<B

e P, should have heavier tails than P,



Importance weighting

e Ridge regression, linear kernel

e Importance weighting improves performance

Test/Train ratio
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Alternatives to density estimation

e Difficulties with direct density estimation
— Empirical Py, and P4, difficult for structured /high dimensional data

— Variance can be large if empirical Py, /Py, large



Alternatives to density estimation

e Difficulties with direct density estimation
— Empirical Py, and P4, difficult for structured /high dimensional data

— Variance can be large if empirical Py, /Py, large

e Some other reweighting approaches:
— Minimize classification error of Pi; vS Pic @i, de9s, €hengand-chm, 2004,
Bicketetat, 2609]
— Minimize KL divergence between [P, and P, (KLIEP) sueivamacrat,
2008]
— Ratio Pi./Py¢; via least-squares function fitting panmmori-ctat, 2oos]
— Minimize Maximum Mean Discrepancy (MMD) between Py, and Py,

[Huanget—all, 2007, Grettonmet—al), 2008]



Kernel distribution metric for transfer learning



A distance between distributions

e Are P and @ different?

Samples from P and Q
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A distance between distributions

e Are P and @ different?

Samples from P and Q
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A distance between distributions

Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 [Epf(x) — Eqf(y)].

Smooth function
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A distance between distributions

Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 [Epf(x) — Eqf(y)].

Smooth function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?1612 [Epf(x) — Eqf(y)].

Bounded continuous function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?"EIF) [Epf(x) — Eqf(y)].

Bounded continuous function

L
T
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Constructing the smooth function

e 7/ RKHS from X to R with positive definite kernel k(x;, x;)
e ['a ball in F
e Example: f(z)=> ", a;k(x;, x) for arbitrary m € N, a; € R, z; € X.




Kernel mean matching for transfer learning

e Reweight training points to minimize MMD: Kernel Mean Matching
(KMM)
miniﬁmize MMD(Pe (), 5(2)P(x); F)
subject to J(x) > 0 and Ep,_ |/(2)] = 1.

o If Pi. < Py, characteristic kernel, solution is Pic(2) = iy ()P ()
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Kernel mean matching for transfer learning

e Reweight training points to minimize MMD: Kernel Mean Matching
(KMM)
miniﬁmize MMD(Pe (), 5(2)P(x); F)
subject to J(x) > 0 and Ep,_ |/(2)] = 1.

o If Pi. < Py, characteristic kernel, solution is Pic(2) = iy ()P ()

e Empirical:

1 2
min 25TK6 — 2/<3T5 + const.
B Tty Tty

Nty

Z Bz — Ntr
1=1

subject to 8; € |0, B] and < \/Nnire.




Kernel mean matching for transfer learning

Compare KMM and importance sampling
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Kernel mean matching for transfer learning

Compare KMM and importance sampling

0.6

Test/Train ratio

0.2

Kernel mean matching
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Kernel mean matching for transfer learning

e Compare KMM and importance sampling
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test/train KMM IC test fit

IC method due to [Shimodairal, 2000)]



Reweighting by classification

Use train/test classification error to reweight (om, 1998, €heneand-cim, 2004,

Bickel vl 2009
P (S|x, Osnire ) classifies training (s = 1) vs test (s = 0)
Importance ratio:

Pio(xfh) _ P(s=1)
Pi (z)  P(s=0)

(P~ (s = 1]z}", Ospine)

Learn two classifiers: train vs test and covariate to label

_1)



Experiments



Breast Cancer data

e Gaussian kernel exp(—|z; — xj]?/(20)) for KMM and SVN, ¢ = 5

e Performance vs ('

— Small C' — prioritize smoothness

e Selection procedure:
— Random training/test split
— Training set from 10% - 50% of test
— P(si = 1]z;) o< exp(—0.05]|z; — T||*)



Breast Cancer data

e Reweighting greatly improves performance

e KMM outperforms IS at small sample sizes

2 60- c=001 |wmSVM
— I Imp.samp.
N
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®

Q

mzu-l l I

o

o

@ 0-

= 140 210 280 350

training samples



Breast Cancer data

e KMM slightly decreases performance

e IS does not help

32 60- C=0.01 [ SVM
= mm imp.samp.
4 — KMM
3 40-

®

Q

= 201

=

3 l i L

a i

- 140 210 280 350

training samples

average testloss in %

6+ C=1

70 140 210 280 350
training samples



Toy example revisited

Kernel ridge regression result

0.6

0.4r

0.2 Kernel ridge regression

X3-X

-0.2

-0.4r

-0.6 -
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Large scale experiments

Regression and classification

Sampling scheme: training data missing at random

— Sampling by Gaussian distribution on first principal component
Cross validate on unweighted training set for C' and o

Same o for classifier /regressor and KMM



Test error

Large scale experiments
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Test error

Large scale experiments

0.8F Improvement
0.6
0.4F
0.2t
0 O & LD
: N SR
Y\O&\Q & QQ«&Q@Q’ &




Test error

Large scale experiments
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Large scale experiments
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Test error

Large scale experiments

KMM worse
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Test error

Large scale experiments
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Conclusion

o KMM: perform covariate shift without density

estimation

e Large performance advantage for “simple” learning

algorithms
e Mixed results for powertul learning algorithms

e Model selection remains an issue
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Questions?






Further work: model selection

e Model selection for covariate shift
e Results from [sugivamaet=at, 2o0s)

e Data have 18-21 dimensions
1.1

—
o
o

—
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o
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KMM kernel size



Further work: model selection

e Model selection for covariate shift

e Some strategies [sicketetat, 2009]
— Systematic drift: can be learned mickeretan, 2009
— Cross validation to obtain error for current § estimate sugivamaetat,
2008, Kananort-et—at, 2009
— Classifier of training vs test: again, cross-validate micketerat, 2009

— Supremum of MMD over set of kernels? jsriperum

e Does knowing something about the learning problem help?



Further work: model selection

e Model selection for covariate shift

e Some strategies [sicketetat, 2009]
— Systematic drift: can be learned mickeretan, 2009
— Cross validation to obtain error for current § estimate sugivamaetat,
2008, Kananort-et—at, 2009
— Classifier of training vs test: again, cross-validate micketerat, 2009

— Supremum of MMD over set of kernels? jsriperum

e Does knowing something about the learning problem help?

e Model selection for weighted learning: bias for unweighted? pamamorietat,

2009
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Characteristic Kernels (1)

Characteristic: MMD a metric (MMD = 0 iff P = Q) ipsors, corros)
Translation invariant kernels: k(x,y) = k(z — y)

Bochner’s theorem:
k(z) = / e WA (w)
Rd

— A finite non-negative Borel measure

Fourier representation of MMD:

MMD(P,Q; F) = ||[(6p — 6a) A]

f
— @p characteristic function of P

— f" is Fourier transform, f" is inverse Fourier transform

— pg = [ k(-,x) dP(x)



Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (3)

e Example: P differs from Q at (roughly) one frequency

Gaussian kernel
Difference |¢pp — ¢
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Characteristic Kernels (3)

e Example: P differs from Q at (roughly) one frequency

Characteristic
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Characteristic Kernels (4)

e Example: P differs from Q at (roughly) one frequency

Sinc kernel
Difference |¢pp — ¢
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Characteristic Kernels (4)

e Example: P differs from Q at (roughly) one frequency

NO'T characteristic
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Characteristic Kernels (5)

e Example: P differs from Q at (roughly) one frequency

B-Spline kernel
Difference |¢pp — ¢

B

0.16

0.14r
0.12¢
0.1

0.08}

0.06

0.04r
0.02r

O L 1 L 1 L
-30 -20 -10 0 10 20 30
Frequency



Characteristic Kernels (5)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (5)

e Example: P differs from Q at (roughly) one frequency

Characteristic
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e Characteristic kernel: (MMD =0 iff P = Q) purson, cormos

e Main theorem: k characteristic it and only if
Supp(./\) — Rd [COLTO08]

— Corollary: continuous, compactly supported k characteristic

e Alternative property: continuous, strictly P.D., includes

NON-translation invariant covros
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Summary: Characteristic Kernels

e Characteristic kernel: (MMD =0 iff P = Q) purson, cormos

e Main theorem: k characteristic it and only if
Supp(./\) — Rd [COLTO08]

— Corollary: continuous, compactly supported k characteristic

e Alternative property: continuous, strictly P.D., includes
NON-translation invariant couros

e Similar reasoning wherever extensions of Bochner’s
theorem exist: miesosa
— Locally compact Abelian groups (periodic domains)

— Compact, non-Abelian groups (orthogonal matrices)

— The semigroup R, (histograms)
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