

Machine Learning and Neuroimaging Workshop

Percept Decoding with Sparse Latent Variable Models

Marcel van Gerven

Donders Centre for Cognition

Understand how percepts are encoded in the brain by exploiting multivariate analysis methods

generative approach:

generative approach:

generative approach:

discriminative approach:

generative approach:

discriminative approach:

sparse latent variable models: interpretable, stable

generative approach:

discriminative approach:

sparse latent variable models: interpretable, stable

Outlook:

- generative sparse model
- generative latent variable model
- discriminative sparse latent variable model
- decoding high-level stimulus properties

Donders Institute for Brain, Cognition and Behaviour

Generative approach: sparse encoding model

For each voxel k: $p(r \mid s) = \mathcal{N}(r; \alpha_k + \beta_k^\top s, \sigma_k)$

Generative approach: sparse encoding model

For each voxel k: $p(r \mid s) = \mathcal{N}(r; \alpha_k + \beta_k^\top s, \sigma_k)$

Choose $-\log p(\alpha_k, \beta_k, \sigma_k^2) \propto R_{\lambda, \tau}(\beta_k)$ with elastic net regularizer

$$R_{\lambda,\tau}(\beta_k) = \lambda \sum_{k=1}^{K} \{(1-\tau)\frac{1}{2} ||\beta_k||_2^2 + \tau ||\beta_k||_1\}$$

Donders Institute

Generative approach: sparse encoding model

For each voxel k: $p(r \mid s) = \mathcal{N}(r; \alpha_k + \beta_k^\top s, \sigma_k)$

Choose $-\log p(\alpha_k, \beta_k, \sigma_k^2) \propto R_{\lambda, \tau}(\beta_k)$ with elastic net regularizer

$$R_{\lambda,\tau}(\beta_k) = \lambda \sum_{k=1}^{K} \{ (1-\tau) \frac{1}{2} ||\beta_k||_2^2 + \tau ||\beta_k||_1 \}$$

Solve *k* independent elastic net problems:

$$\hat{\theta}_{k} = \arg \min_{\alpha_{k}, \beta_{k}, \sigma_{k}^{2}} \left\{ -\log p(\alpha_{k}, \beta_{k}, \sigma_{k}^{2}) - \sum_{n} \log \mathcal{N}\left(r_{k}^{n}; \alpha_{k} + \beta_{k}^{\top}s^{n}, \sigma_{k}^{2}\right) \right\}$$

$$- \frac{1}{2} \frac{1}$$

Markov random field interpretation

It can be shown that $p(r|s) = rac{1}{Z} \prod_i \psi_i(s_i) \prod_{i \sim j} \psi_{i,j}(s_i,s_j)$ where

$$\psi_i(s_i) = \exp\left(s_i \sum_k \frac{\beta_{ki}}{\sigma_k^2} (r_k - \alpha_k - \frac{1}{2}\beta_{ki})\right)$$

$$\psi_{i,j}(s_i, s_j) = \exp\left(-s_i s_j \sum_k \frac{\beta_{ki}}{\sigma_k^2} \beta_{kj}\right)$$

It can be shown that $p(r|s) = rac{1}{Z} \prod_i \psi_i(s_i) \prod_{i \sim j} \psi_{i,j}(s_i,s_j)$ where

$$\psi_i(s_i) = \exp\left(s_i \sum_k \frac{\beta_{ki}}{\sigma_k^2} (r_k - \alpha_k - \frac{1}{2}\beta_{ki})\right)$$

$$\psi_{i,j}(s_i, s_j) = \exp\left(-s_i s_j \sum_k \frac{\beta_{ki}}{\sigma_k^2} \beta_{kj}\right)$$

Define appropriate MRF prior:

$$p(s) = \frac{1}{Z} \prod_{i} \phi_i(s_i) \prod_{i \sim j} \phi_{i,j}(s_i, s_j)$$

Define appropriate MRF prior:

$$p(s) = \frac{1}{Z} \prod_{i} \phi_i(s_i) \prod_{i \sim j} \phi_{i,j}(s_i, s_j)$$

Estimate the mode of the following MRF:

$$p(s|r) = \frac{1}{Z} \prod_{i} (\phi_i(s_i)\psi_i(s_i)) \prod_{i \sim j} (\phi_{i,j}(s_i, s_j)\psi_{i,j}(s_i, s_j))$$
Donders Institute

Results

- Miyawaki et al., Neuron, 2008
- 10x10 images (random/geometric)
- BOLD response measured in 1017 voxels in primary visual cortex

Results

 Miyawaki et al., Neuron, 2008
 10x10 images (random/geometric)
 BOLD response measured in 1017 voxels in primary visual cortex

encoding

Results

 Miyawaki et al., Neuron, 2008
 10x10 images (random/geometric)
 BOLD response measured in 1017 voxels in primary visual cortex

decoding 🖬 🛛 🖬 🗖 바 문 문 비 환 12 I I I 8 - C X flat prior 0.5 Manhattan distance informed prior 0.4 0.3 0.2 0.1 300 100 200 400 0 included voxels Radboud University Nijmeger

van Gerven et al. Neural decoding with hierarchical generative models. *Neural Computation*, 2010.

Radboud University Nijmegen

Donders Institute

van Gerven et al. Neural decoding with hierarchical generative models. *Neural Computation*, 2010.

Radboud University Nijmegen

woensdag 9 november 2011

Donders Institute

van Gerven et al. Neural decoding with hierarchical generative models. *Neural Computation*, 2010.

Radboud University Nijmegen

woensdag 9 november 2011

Donders Institute

van Gerven et al. Neural decoding with hierarchical generative models. *Neural Computation*, 2010.

Radboud University Nijmegen

Donders Institute

Induce a coupling with conditional restricted Boltzmann machines

Experimental results

Experimental results

Experimental results

• learn deep belief network

- learn deep belief network
- learn responses using elastic net

- learn deep belief network
- learn responses using elastic net
- represent as a Markov random field

- learn deep belief network
- learn responses using elastic net
- represent as a Markov random field
- decode by estimating the mode of the MRF

Predict image from a restricted set of responses using a small number of latent variables

van Gerven and Heskes. Sparse Orthonormalized Partial Least Squares. In: BNAIC. 2010.

Predict image from a restricted set of responses using a small number of latent variables

Key features:

van Gerven and Heskes. Sparse Orthonormalized Partial Least Squares. In: BNAIC. 2010.

Radboud University Nijmeger

woensdag 9 november 2011

Predict image from a restricted set of responses using a small number of latent variables

Key features:

Donders Institute

Linear: not enough data to (consistently) find strong nonlinear effects, stable, fast.

van Gerven and Heskes. Sparse Orthonormalized Partial Least Squares. In: BNAIC. 2010.

Predict image from a restricted set of responses using a small number of latent variables

Key features:

Donders Institute

- Linear: not enough data to (consistently) find strong nonlinear effects, stable, fast.
- Dimension reduction: gives a smooth image-like output, helps prevent overfitting.

van Gerven and Heskes. Sparse Orthonormalized Partial Least Squares. In: BNAIC. 2010.

Predict image from a restricted set of responses using a small number of latent variables

Key features:

Donders Institute

- Linear: not enough data to (consistently) find strong nonlinear effects, stable, fast.
- Dimension reduction: gives a smooth image-like output, helps prevent overfitting.
- Sparsity: small number of relevant voxels makes the model interpretable.

van Gerven and Heskes. Sparse Orthonormalized Partial Least Squares. In: BNAIC. 2010.

Partial least squares

Linear heteroencoder:

Unique optimal solution (no local minima).

reduces to principal component analysis in case x=y;

rows of **Q** correspond to principal components of y.

Donders Institute for Brain, Cognition and Behaviour

Sparse partial least squares

Sparse partial least squares

Objective:

$$(\hat{\mathbf{P}}, \hat{\mathbf{Q}}) = \arg\min_{\mathbf{P}, \mathbf{Q}} \left[\frac{1}{2N} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{Q}\mathbf{P}^{\top}\mathbf{x}^{(n)}||_{2}^{2} + R_{\nu, \Lambda}(\mathbf{P}) \right]$$
with $\hat{\mathbf{P}}_{n}$ (\mathbf{P}) = $\mathbf{x} \sum_{n=1}^{k} ||\mathbf{P}_{n}||_{2} + \frac{1}{2} \sum_{n=1}^{k} \mathbf{P}^{\top}\mathbf{A}\mathbf{P}$

Sparse partial least squares

Objective:

Donders Institute for Brain, Cognition and Behaviour

$$(\hat{\mathbf{P}}, \hat{\mathbf{Q}}) = \arg\min_{\mathbf{P}, \mathbf{Q}} \left[\frac{1}{2N} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{Q}\mathbf{P}^{\top} \mathbf{x}^{(n)}||_{2}^{2} + R_{\nu, \Lambda}(\mathbf{P}) \right]$$

with
$$R_{\nu,\Lambda}(\mathbf{P}) = \nu \sum_{i=1}^{k} ||\mathbf{P}_i||_1 + \frac{1}{2} \sum_{j=1}^{k} \mathbf{P}_j^{\top} \Lambda \mathbf{P}_j$$

reduces to sparse PCA in case x=y (Zou et al., J Comput Graph Stat, 2006)

Fix **Q**, reconstruct $\mathbf{Z} = \mathbf{Q}^T \mathbf{Y}$, and solve

$$\hat{\mathbf{P}} = \arg\min_{\mathbf{P}} \left[\frac{1}{2N} \sum_{n=1}^{N} ||\mathbf{z}^{(n)} - \mathbf{P}^T \mathbf{x}^{(n)}||_2^2 + R_{\nu,\Lambda}(\mathbf{P}) \right]$$

Donders Institute

Fix **Q**, reconstruct $\mathbf{Z} = \mathbf{Q}^T \mathbf{Y}$, and solve

$$\hat{\mathbf{P}} = \arg\min_{\mathbf{P}} \left[\frac{1}{2N} \sum_{n=1}^{N} ||\mathbf{z}^{(n)} - \mathbf{P}^T \mathbf{x}^{(n)}||_2^2 + R_{\nu,\Lambda}(\mathbf{P}) \right]$$

set of standard elastic net problems

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010;33(1):1–22.

Fix **P**, reconstruct $\mathbf{Z} = \mathbf{P}^T \mathbf{X}$, and solve $\hat{\mathbf{Q}} = \arg \min_{\mathbf{P}} \left[\frac{1}{2N} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{Q}^T \mathbf{z}^{(n)}||_2^2 \right]$ subject to $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_k$

Donders Institute

Fix **P**, reconstruct $\mathbf{Z} = \mathbf{P}^T \mathbf{X}$, and solve $\hat{\mathbf{Q}} = \arg\min_{\mathbf{P}} \left[\frac{1}{2N} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{Q}^T \mathbf{z}^{(n)}||_2^2 \right]$

subject to $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_k$

$$\hat{\mathbf{Q}} = \mathbf{\Sigma}_{yz} \left(\mathbf{\Sigma}_{yz}^T \mathbf{\Sigma}_{yz} \right)^{-1/2} \quad \text{with} \quad \mathbf{\Sigma}_{yz} \equiv \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}^{(n)} \left(\mathbf{z}^{(n)} \right)^T$$
Conders Institute
Or Brain, Cognition and Behaviour
Condition and

Experiment

- Miyawaki et al., Neuron, 2008
- 10x10 images (geometric)
- BOLD response measured in 1017 voxels in primary visual cortex
- > 10 latent variables, v=0.01

Learned features

Learned features (rows of the matrix ${f Q}$) are similar to principal components of the original images but change as a function of v

Reconstructions

Reconstructions on hold-out data

Sparseness

selected voxels for the first latent variable out of all voxels in primary visual cortex

For v = 0.01, 80% of the parameters are set to zero

Donders Institute

Ø

Classification of handwritten characters classes (6 vs 9) from BOLD response:

We require:

$$p(\boldsymbol{\theta} \mid \mathbf{D}) \propto p(\mathbf{D} \mid \boldsymbol{\theta})p(\boldsymbol{\theta})$$

likelihood: logistic regression model

prior: sparse and smooth solutions

$$p(\boldsymbol{\theta}) = \int d\mathbf{u}\mathbf{v} \left(\prod_{k} \mathcal{N}(\theta_{k}; 0, u_{k}^{2} + v_{k}^{2})\right) \mathcal{N}(\mathbf{u}; \mathbf{0}, \mathbf{Q}) \mathcal{N}(\mathbf{v}; \mathbf{0}, \mathbf{Q})$$

- preference for small regression coefficients
- large magnitude in one coefficient reduces regularization of coupled coefficients

- Ø
- Posteriors are computed with expectation propagation
- Scales well with the number of variables
- Computation time depends on the amount of coupling

van Gerven MAJ, Cseke B, de Lange FP, Heskes T. Efficient Bayesian Multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuroimage. 2010;50(1):150–161.

van Gerven MAJ, Cseke B, Oostenveld R, Heskes T. Bayesian source localization with the multivariate Laplace prior. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A, editors. Neural Information Processing Systems 23. 2009. p. 1901–1909.

Conclusions and future work

 Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

• other regularizers (e.g., total variation)

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS
- Bayesian formulation of SPLS

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS
- Bayesian formulation of SPLS
- combine low-level and high-level information

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS
- Bayesian formulation of SPLS
- combine low-level and high-level information
- focus on reactivation during imagery and memory retrieval

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS
- Bayesian formulation of SPLS
- combine low-level and high-level information
- focus on reactivation during imagery and memory retrieval
- use intracranial EEG and high-field fMRI

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS
- Bayesian formulation of SPLS
- combine low-level and high-level information
- focus on reactivation during imagery and memory retrieval
- use intracranial EEG and high-field fMRI

Acknowledgements:

Tom Heskes, Floris de Lange, Eric Maris

- Generative approach via Bayesian inversion of sparse forward model, possibly on abstract stimulus features (also see Thirion, 2006, Gallant, 2009) - easier to interpret
- Discriminative approach via sparse partial least squares (also see Kamitani, 2008) - better decoding performance

- other regularizers (e.g., total variation)
- multitask formulation of SPLS
- Bayesian formulation of SPLS
- combine low-level and high-level information
- focus on reactivation during imagery and memory retrieval
- use intracranial EEG and high-field fMRI

Acknowledgements:

Donders Institute

Tom Heskes, Floris de Lange, Eric Maris

methods part of FieldTrip multivariate module (http://fieldtrip.fcdonders.nl)

Face decoding

Spatial statistics

Decoding spatial statistics

Ρ

Q

X

Z

y

Semantics

Decoding semantics

M. A. J. van Gerven, B. Cseke, F. P. de Lange, and T. Heskes. Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. *NeuroImage*, 50(1):150–161, 2010.

Radboud University Nijmegen

Donders Institute for Brain, Cognition and Behaviour

Pilot results

0

spatial statistics

-0.051675

0.42305

semantics

decoding of gender 80% correct

laughing

laughing

young

Donders Institute

laughing young woman

Imagined face identification

