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Overview

Neuroimaging (MRI/PET) Final phenotype
Clinic/behavioural

Problem
Vast amount of biological measurements:
– Neuroimaging (~106 voxels), DNA array (~106 SNPs)
→ Spurious associations between: genetic x imaging x clinic
→ Poor reproducibility (multiple comparison/over-fitting issues)

Genetic (DNA array)

Principle
Imagery as an intermediate phenotype

Example of exploratory data strategy
Step 1: Neuroimaging to clinic

→ identify neuroimaging-based intermediary phenotypes 
Step 2: Genetic to neuroimaging-based intermediary 
phenotypes

→ identify genetic markers (link to pathways etc.)
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Outline

Neuroimaging (PET) Final phenotype
Clinic/behavioural

Application to autism  

Genetic (DNA array) Neuroimaging (fMRI)

Application: asymetries in language processing  
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Neuroimaging to predict the clinical status

Neuroimaging (PET) Final phenotype
Clinic/behavioural

Application to autism  

Genetic (DNA array) Neuroimaging (fMRI)

Application: asymetries in language processing  
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Brains variability

Ideal scenario:
1) Neuroimaging measurements (anatomical/diffusion/functional-MRI)
2) Re-align brains: remove non-specific variability
3) Do Machine learning on the specific variability

– Find the brain variability
   associated to a clinical trait
– How to compare brains?
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Features extraction strategies
Volume of Interest (VOI or ROI)
- Manually defined
- Template-based

Structure identification
- Automatically defined
- Manually defined
=> Structural data

Hippocampus_Signal
of subject 1

Hippocampus_Signal
of subject 2

subject 1 subject 2

Central sulcus length
of subject 1

Central sulcus length
of subject 2

Brain warping
- Warp brain toward a 
common template
(coordinate system)
=>Iconic data Voxel of

subject 1
Voxel of
subject 2
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Classical voxel-wise analysis

– Similar to (GWAS) Genome-wide association study
– Overlook brain-brain interaction
– No individual classification
– Multiple comparison issues 

ML in neuroimaging

Multivariate classification
Find a global mapping from the
brain to the clinic
– Improved sensitivity
– Consider brain-brain interactions
– Over-fitting issue: need careful validation

Analyse each brain locus
Independently: Measure the
brain/clinic association

Goal:
(1) Imaging profile that covariate with phenotype (clinical  severity)
(2) Individual computer aided diagnosis
(3) Individual predictor of response to treatment
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Gyri

Sulci

Fibres

aMRI

DTI
Qball

fMRI

PET
Global
scaling

GLM

FA map

Segmentation aMRI

DTI
Qball

Automatic 
structures
identification

Fibre
identification

(work in progress)

Sulci/Gyri
identification

Structural methods

Data: Iconic / Structural

~105 

#features
~105,106

~105 

#features
~103,104

Registration
&

Pre-processing:

Iconic (image based) methods
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Structural Based Morphometry: summary

Grey/White
segmentation

Sulci
extraction

Automatic sulci
identification

Machine learning
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Compare the same anatomical structures (sulci) 
across all subject without registration (just linear normalization)

Superimposed sulci of 70 subjects

Anatomical MRI: compare sulci measurements
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Dimension reduction
1/T-test
2/SFS objective function:
   cross-validation error
3/number of supports vectors 

Classification
➔SVM-RBF (non linear)

Females

Males

Two dimensional example

Correct prediction 
rate : 85%

nb. of features~10

[Duchesnay et al. IEEE-TMI 2007]

Classification based on sulci: predict gender
nb. of features:
 ~ 105
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Guess the gender from sulci

Correct 
recognition rate : 
85%.  
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Guess left/right hemisphere from sulci 

Correct recognition rate : 96%.  

Use only “size” descriptors: sulcus length, depth, surface
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ASD subject prediction based on PET-scans

rCBF PET scans of45 low-functioning ASD and 13 low-functioning non-ASD 

asd
asd

asd
non-asd

asd
non-asd

non-asd

Learn mapping

Left out
samples

apply mapping

Compare the predicted 
label with the true label

asd
asd

Left-out sample cross-validation

Assess the generalisation power of the learning algorithm on 
independent data (toward reproducibility) 

Cerebral Blood Flow
PET scan



15
E. Duchesnay, I2BM/NeuroSpin        MLNI Workshop, Marseille, 2011 

weight 1 weight 2 ... weight Pweight 0

feat. 1 feat. 2 ... feat. P
* * * *

+ + + +

Prediction rule of linear discriminant classifier (combine features):

Learn: How to learn w the weight vector such:

=
n

p

wX

1

p

× n

1

Train data 
(images)

p number of features ~ 105

n number of samples ~ 100

Y

= predicted
target

True targetPredicted target

Linear classifier

Link
function

( )

( )

Link
function
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Linear classifier: Parametric method

Estimate model parameters:
●Means
●“Dispersion” (Var./Covar. matrix)
(Within covariance  matrix)

Data

?

w

n

p

p

p

f
i

f
j

f
i

f
jX

x

Discriminant projection:

f
i
 (feature i)

f j (
fe

a
tu

re
 j
)

Probabilistic generative (LDA)
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Linear classifier: discriminative approaches 

Find w that minimize a prediction error on training data:

Penalization Loss (Error) function between prediction
And true label

L2 penalization: SVM

L1 penalization: Lasso Logistic Regression

– L = 2
– Hinge loss:

– L = 1
– Logistic loss:

→ Minimisation of misclassification: favour most numerous class
→ Poor specificity
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1) Samples re-weighting simple for both SVM and Lasso Logistic 
Regression
→ Good  sensitivity (detection of the mos numerous class)
→ Poor specificity (detection of the least numerous class)

2) Sub-sampling of the most numerous class: can afford to drop 
some of the few 45 samples of ASD group

3) Two separate one class learning
~ generative methods ie.: learn the conditionals p(x

i
|y

i
).

The predictive = conditional * explicit priors
→ Linear Discriminant Analysis (LDA)

Pb.: Overfitting P(P+5)/2 estimated parameters (intraclass 
variance)

→ Dimension reduction

Group size imbalance problem
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Dimension reduction: 1/2 regional features

Goal driven regional feature extraction:
Univariate statistics (GLM)

Thresholding

Average signal within clusters
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Supervised (goal driven)
→ Feature selection
- Maximum image/target covariance

Supervised (goal driven)
→ Feature selection
- Maximum image/target covariance

Unsupervised (data driven)
→ Feature extraction
- Maximum image variability

Unsupervised (data driven)
→ Feature extraction
- Maximum image variability

Dimension reduction
- Look for low dimensional data representation

Dimension reduction
- Look for low dimensional data representation

Linear
(Max var.)
- PCA
- ICA

Linear
(Max var.)
- PCA
- ICA

Non linear
(Manifold learning)
- Isomap
- LLE
- Kernel PCA

Non linear
(Manifold learning)
- Isomap
- LLE
- Kernel PCA

Univariate
- Filters GLM

“Voxel based analysis”
“Genome Wide Assoc. 
Studies”

Univariate
- Filters GLM

“Voxel based analysis”
“Genome Wide Assoc. 
Studies”

Multivariate
- Wrapper

* RFE
* SFFS

- Embedded
* L1

Multivariate
- Wrapper

* RFE
* SFFS

- Embedded
* L1

Dimension reduction: 1/2 methods

Feature selection = Feature subset ranking + model selection

Feature subset ranking produce sets of features (F
k
) of increasing size k

– Filter and RFE: nested sets are nested
– Lasso, SFFS: eventually non-nested sets
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Model selection

1) CV →  Computational issue: 3 levels of nested sampling loop

Select F
k
 that maximizes some criteria

Here Choose feature subset F
k
 made of k (regional) features

Evidence Log likelihood Penalisation

2) Penalized likelihood 

Many fixed penalty criteria BIC, AIC, etc.

Under penalization (ignore feature selection)

Data driven calibration of the penalty [Birgé 07]

Add a free parameter “a”

Calibrated with random permutation
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Comparison methodology

Feature extraction
Voxels
Regions

Dimension reduction

no
GLM
RFE
Lasso

Model selection
CV
Penalized Likelihood

Classification
Lin SVM (L2)
Lasso Log. Reg (L1)
LDA
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Regional features + Multivariate feature selection + Generative

Results (Validation)
ROC analysis

Leave-One Out Cross validation
Accuracy 87%***, Sensi. 91%***, Speci. 77%*

Significance calibrated with permutation (*** p<0.001, * p<0.05)
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Discriminative pattern

The combination of the signal
in the two regions enable a
clear separation of ASD vs controls

– Good stability: same pattern is selected across all re-sampling
– Shared pattern that discriminates all ASD from controls
– Multiple etiologies of ASD + numerous neuroimaging findings suggests that
  several others brain patterns may exist across the autistic spectrum
– Next step: look for the more specific multiple patterns associated
with the multiple etiologies 

hyper-perfusion in
postcentral area (in ASD)

hypo-perfusion in
Superior Temporal Sulcus (in ASD)
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Imaging-genetics

Neuroimaging (PET) Final phenotype
Clinic/behavioural

Application to autism  

Genetic (DNA array) Neuroimaging (fMRI)

Application: asymetries in language processing  
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1 2 3 64 5

Speech comprehension task
Motor task

No stimulus

Reading task

Ti
m

e-
se

rie
s





For each subject,
activation maps:


Stimuli

*
*
*

Fit
linear
model

Fit
linear
model

2) Intra-subject analysis
For each voxel



 



For each voxel

Convolve with
HRF response

1) Inter-subject normalization

Extraction of contrast maps for:
- a reading task
- a speech comprehension task

Functional MRI data of the experimental dataset

[Pinel et al., 2007]
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Functional MRI data of the experimental dataset

– According to the data: maxima of activation
– According to the literature: involved in dyslexia   
  and language networks 

4) Computation of 34 lateralization indexes

Y

Q=34 imaging 

N=94 subjects

3) Choice of brain regions of interest 

phenotypes
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Genetic data of the experimental dataset

X

p=622, 534 SNPs

N=94 subjects

1,054,068 Single Nucleotide Polymorphisms (SNPs)
SNPs: Most variable nucleotides across the genome
For each SNP 3 possible values: AA, AB, BB 

DNA microarray (Illumina)

Pre-processing:
– Filtering : (1) Minor Allele Frequency (MAF) at least 10%
      (2) call rate at least 95%
                     (3) Hardy-Weinberg  test not significant at 0.005
– Coding : for each SNP, number of minor alleles {0,1,2}
– Missing SNP data were imputed with their corresponding median

[Pinel et al., 2007]
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Simulated dataset

Genetic data
Simulate realistic genetic data 
gs algo. [Li & Chen 08]
Hapmap CEU Panel
n=500 unrelated subjects 
p=85,772 SNPs (chromosome 1)

Genetic effect (additive model)
– Randomly select 10 SNPs with MAF=0.2
– Two causal patterns each involves 5SNPs → 4 ROIs
– For each causal patterns i in 1...2

* Average the 5 SNPs
* For each ROI j in 1...4: 

– 
        Controls for explained variance of      on 

– SNPs in high LD (R2>0.8) with true causal are considered causal (56 SPNs)
– Strip of haplotype blocks in the causal SNPs neighbourhood (198 SNPs)
  and move them at the beginning of the dataset  

Imaging data
Sample from multivariate ()
Parameters                 estimated
on experimental data
n=500, q=34
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Problems: 
- no SNP/phenotype association survived multiple comparisons
- Multivariate nature of the imaging/genetics link not taken into
  account

Problems: 
- no SNP/phenotype association survived multiple comparisons
- Multivariate nature of the imaging/genetics link not taken into
  account

X Y

What is currently done in imaging genetics?

Genome Wide Association Studies (GWAS)
Massive univariate testing of each SNP versus each imaging 
phenotype independently (simple linear regression)
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Multivariate methods in imaging genetics

Study the link between genetic and neuroimaging data by 
taking into account the interactions between genes and 
the interactions between brain regions

→ looking for associations between two co-varying 
networks of genes and brain regions

Goal

Problem:
Curse of dimensionality: multivariate methods overfit in high
dimensional settings (find associations just by chance)

Problem:
Curse of dimensionality: multivariate methods overfit in high
dimensional settings (find associations just by chance)

X Y
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Multivariate methods based on latent variables

Genetic latent 
variable 

Imaging latent 
variable 

– Canonical Correlation Analysis
– Partial Least Squares

Other two blocs methods in imaging-genetic context
→ Parallel ICA [Calhoun 09] 
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Partial Least Squares (PLS) Regression

Canonical Correlation Analysis (CCA)

Maximizes the correlation between the two latent variables:

Maximizes the covariance between the two latent variables:

→ Solved by an iterative algorithm (NIPALS)
→ Further pairs of components obtained after deflation of X and Y

Numerical issues: dual formulation of CCA: Kernel CCA (KCCA)

Multivariate methods based on latent variables
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Regularisation

L2 regularised CCA (rCCA)

L1 regularised PLS: sparse PLS (sPLS)

Add diagonal term to intra-block scatter matrices 

Extreme case of regularisation, scatter matrices → I  ↔ rCCA ~ PLS

Add L1 penalisation on the SNPs weights (u)

L2 regularised CCA (rCCA)
- [Waaijenborg08] Elastic Net: lasso and ridge X'X=Y'Y+λI
- [Parkhomenko09] Soft-thresholding, X'X= diag(X'X)
- [Witten09] X'X=Y'Y=I
→ such extreme regularization on X'X makes CCA ~ PLS

– [Chun & Keles07] (regression)    
– [LeCao08]

* Soft thresholding within PLS iterations
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Sparse PLS: NIPALS revisited
Bi-convex in (u) and (v), add soft-thresholding within the NIPALS loop

NIPALS_soft_thresholding (X, Y)

return (x*, y*)
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Dimension reduction

– We are interested in inter-blocks correlation → CCA
– However CCA overfitt: poor estimation of intra-bloc “variance” 
(scatter) matrix
– Sparse PLS show promising results on simulated but failed on 
experiential data
– Add dimension reduction to remove unwilling intra-bloc variance?

→ PCA
→ Feature selection based on filtering
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Cross-validation (CV) and significance assessment
For each fold i of the 10-fold CV:

Out-of-sample 
correlation 
between latent 
variables averaged 
over folds

1000 
permutations
→ p-value of 
the    average 
out-of-sample 
correlation



38
E. Duchesnay, I2BM/NeuroSpin        MLNI Workshop, Marseille, 2011 

Results on simulated dataset
Comparison of penalisation strategies SPLS: sparse (L1 regularised) SPLS

rkCCA: L2 regularised kernelized CCA

→ Sparse PLS outperformed other methods
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Results on simulated dataset
Comparison of dimension reduction
strategies

MULM: Massive Univariate Linear Model
PC = PCA, f = filter
fsPLS = filter + sparse PLS

→ Combined filter + sparse PLS outperformed other methods
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Classical univariate analysis

→ no significant SNP/phenotype associations after correction 
    for multiple comparisons

Multivariate methods

→ Average out-of-sample correlation between latent variables:

* significant p-value (p<0.05), computed with permutation
correction for the multiple experiments using maxT

→ Gain in sensitivity compared to univariate analysis
→ Both filtering and sparsity seem necessary

→ Gain in sensitivity compared to univariate analysis
→ Both filtering and sparsity seem necessary

PLS

Sparse PLS

Filtering + Sparse PLS

-0.09

0.19

0.43*

Results on experimental dataset
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→ 50 SNPs  selected on 
all chromosomes
→ Only 14 Genes
→ PLS weights !=
univ. ranking
→ Some (rare) 
correlated   
neighboring SNPs (in 
linkage 
disequilibrium) 
selected together
→ PPP2R2B and 
RBFOX1 ataxia and a 
poor coordination of 
speech and body 
movement
→ Poor stability: 
difficult to asses

SPLS weights for 1000s univ. best ranked SNPs

Results: Weights assigned to selected SNPs

50 SNPs selected → 14 genes
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Results: Weights assigned to selected phenotypes

→ 17 selected lateralization  
    phenotypes mainly from 
    the reading task
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Two blocks latent methods

Classification

Open questions
– Causality
– Structure (gene/ima.)
– Multi-blocks gene.>Ima.>Clinic 
...



44
E. Duchesnay, I2BM/NeuroSpin        MLNI Workshop, Marseille, 2011 

Thanks

LNAO & Genim program @ NeuroSpin
– Edith Le floch
– Vincent Frouin
– Bertrand Thirion
– JB Poline
– Alexis Barbot
– Denis Rivière

Unicog @ NeuroSpin
– Philippe Pinel
– Stanislas Dehaene

Supelec
– Arthur Tenenhaus
– Laura Trinchera

Necker (INSERM, CEA)
– Monica Zibovicius 

St-Anne (AP-HP, Descartes)
– Arnaud Cachia


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

