Neuroimaging as an intermediate phenotype to bridge the gap between clinic and genetic: Machine learning methods

Edouard Duchesnay

Edith Le Floch, Vincent Frouin, Bertrand Thirion, JB Poline

NeuroSpin, LNAO, CEA Saclay

Principle

Imagery as an intermediate phenotype

Example of exploratory data strategy

Step 1: Neuroimaging to clinic

 \rightarrow identify neuroimaging-based intermediary phenotypes

Step 2: Genetic to neuroimaging-based intermediary phenotypes

 \rightarrow identify genetic markers (link to pathways etc.)

Problem

Vast amount of biological measurements:

- Neuroimaging (~10⁶ voxels), DNA array (~10⁶ SNPs)
- → Spurious associations between: *genetic x imaging x clinic*
- → Poor reproducibility (multiple comparison/over-fitting issues)

Application: asymetries in language processing

Neuroimaging to predict the clinical status

Application to autism

Application: asymetries in language processing

Ideal scenario:

- 1) Neuroimaging measurements (anatomical/diffusion/functional-MRI)
- 2) Re-align brains: remove non-specific variability
- 3) Do Machine learning on the specific variability

Features extraction strategies

Volume of Interest (VOI or ROI)

- Manually defined
- Template-based

Structure identification

- Automatically defined
- Manually defined
- => Structural data

Hippocampus_SignaHippocampus_Signal of subject 1 of subject 2

Central sulcus lengthCentral sulcus length of subject 1 of subject 2

Brain warping

Warp brain toward a common template (coordinate system)
>Iconic data

MLNI Workshop, Marseille, 2011

ML in neuroimaging

Classical voxel-wise analysis

Analyse each brain locus Independently: Measure the brain/clinic association

- Similar to (GWAS) Genome-wide association study
- Overlook brain-brain interaction
- No individual classification
- Multiple comparison issues

Multivariate classification

Find a global mapping from the brain to the clinic

- Improved sensitivity
- Consider brain-brain interactions
- Over-fitting issue: need careful validation

Goal:

- (1) Imaging profile that covariate with phenotype (clinical severity)
- (2) Individual **computer aided diagnosis**
- (3) Individual predictor of **response to treatment**

Data: Iconic / Structural

☐⊖∪ſ[®]Spi∩ E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

CEO Structural Based Morphometry: summary

☐ CUC SOI∩ E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

Anatomical MRI: compare sulci measurements

across all subject without registration (just linear normalization)

Classification based on sulci: predict gender

Guess the gender from sulci

MLNI Workshop, Marseille, 2011

Guess left/right hemisphere from sulci

Use only "size" descriptors: sulcus length, depth, surface

Correct recognition rate : 96%.

ASD subject prediction based on PET-scans

rCBF PET scans of 45 low-functioning ASD and 13 low-functioning non-ASD Left-out sample cross-validation

14

Ceol Linear classifier

Prediction rule of linear discriminant classifier (**combine** features):

⊖j⊖ E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

Ceo Linear classifier: Parametric method

Ceci Linear classifier: discriminative approaches

Find **w** that minimize a prediction error on training data:

$$\|\mathbf{w}\|_L + C \sum_i \xi(\mathbf{w}; \mathbf{x}_i, y_i)$$

Penalization

Loss (Error) function between prediction And true label

L2 penalization: SVM - L = 2 - Hinge loss: $\xi(\mathbf{w}; \mathbf{x}_i, y_i) = \max(1 - y_i \mathbf{x}'_i \mathbf{w}, 0)$

L1 penalization: Lasso Logistic Regression - L = 1- Logistic loss: $\xi(\mathbf{w}; \mathbf{x}_i, y_i) = \log(1 + e^{-y_i \mathbf{x}'_i \mathbf{w}})$

\rightarrow Minimisation of misclassification: favour most numerous class \rightarrow Poor specificity

Group size imbalance problem

1) Samples re-weighting simple for both SVM and Lasso Logistic Regression

 \rightarrow Good sensitivity (detection of the mos numerous class)

→ Poor specificity (detection of the least numerous class)

2) Sub-sampling of the most numerous class: can afford to drop some of the few 45 samples of ASD group

3) Two separate one class learning

~ generative methods ie.: learn the conditionals $p(\mathbf{x}_i|\mathbf{y}_i)$.

The predictive = conditional * explicit priors → Linear Discriminant Analysis (LDA)

Pb.: Overfitting P(P+5)/2 estimated parameters (intraclass variance)

→ Dimension reduction

Cec Dimension reduction: 1/2 regional features

Goal driven regional feature extraction: Univariate statistics (GLM)

Feature selection = Feature subset ranking + model selection

Feature subset ranking produce sets of features (F_{μ}) of increasing size k

- Filter and RFE: nested sets are nested
- Lasso, SFFS: eventually non-nested sets

Model selection

Select F_k that maximizes some criteria

Here Choose feature subset F_k made of k (regional) features

1) CV → Computational issue: 3 levels of nested sampling loop

Centre Comparison methodology

CEC Results (Validation)

Regional features + Multivariate feature selection + Generative

Leave-One Out Cross validation Accuracy 87%^{***}, Sensi. 91%^{***}, Speci. 77%^{*} Significance calibrated with permutation (*** p<0.001, * p<0.05)

☐⊖⊖r E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

Discriminative pattern

hyper-perfusion in postcentral area (in ASD)

hypo-perfusion in Superior Temporal Sulcus (in ASD)

The combination of the signal in the two regions enable a clear separation of ASD vs controls

- Good stability: same pattern is selected across all re-sampling
- **Shared** pattern that discriminates all ASD from controls
- Multiple etiologies of ASD + numerous neuroimaging findings suggests that several others brain patterns may exist across the autistic spectrum
 Next step: look for the more specific multiple patterns associated with the multiple etiologies

Imaging-genetics

Application to autism

Application: asymetries in language processing

E Functional MRI data of the experimental dataset

1) Inter-subject normalization

Extraction of contrast maps for:

- a **reading** task
- a **speech comprehension** task

Functional MRI data of the experimental dataset

Genetic data of the experimental dataset

DNA microarray (Illumina)

1,054,068 **Single Nucleotide Polymorphisms** (SNPs) SNPs: Most variable nucleotides across the genome For each SNP 3 possible values: AA, AB, BB

Pre-processing:

- **Filtering** : (1) Minor Allele Frequency (MAF) at least 10%

(2) call rate at least 95%

(3) Hardy-Weinberg test not significant at 0.005

- **Coding** : for each SNP, number of minor alleles {0,1,2}
- Missing SNP data were imputed with their corresponding median

Simulated dataset

Genetic data

Simulate realistic genetic data gs algo. [Li & Chen 08] Hapmap CEU Panel n=500 unrelated subjects p=85,772 SNPs (chromosome 1)

Imaging data

Sample from multivariate () Parameters $\mu_1 \mu_2 \Sigma$ estimated on experimental data n=500, q=34

Genetic effect (additive model)

- Randomly select 10 SNPs with MAF=0.2
- Two causal patterns each involves 5SNPs \rightarrow 4 ROIs
- For each causal patterns i in 1...2
 - * Average the 5 SNPs \mathcal{X}_i

* For each ROI *j* in 1...4:
$$y_{ij}$$

$$-y_{ij} = y_{ij} + \beta_{ij}x_i$$

- β_{ij} Controls for explained variance of \bar{x}_i on y_{ij}^{\star} SNPs in high LD (R2>0.8) with true causal are considered causal (56 SPNs)
- Strip of haplotype blocks in the causal SNPs neighbourhood (198 SNPs) and move them at the beginning of the dataset

What is currently done in imaging genetics?

Genome Wide Association Studies (GWAS)

Massive univariate testing of each SNP versus each imaging phenotype independently (simple linear regression)

Problems:

- no SNP/phenotype association survived **multiple comparisons**

Multivariate nature of the imaging/genetics link not taken into account

Goal

Study the link between genetic and neuroimaging data by taking into account the **interactions between genes** and the **interactions between brain regions**

→ looking for associations between two co-varying networks of genes and brain regions

Problem: Curse of dimensionality: multivariate methods overfit in high dimensional settings (find associations just by chance)

- Canonical Correlation Analysis
- Partial Least Squares

Other two blocs methods in imaging-genetic context \rightarrow Parallel ICA [Calhoun 09]

Partial Least Squares (PLS) Regression

Maximizes the covariance between the two latent variables:

$$\max_{\|\mathbf{u}_h\|_2 = \|\mathbf{v}_h\|_2 = 1} \mathbf{u}'_h \mathbf{X}'_{h-1} \mathbf{Y}_{h-1} \mathbf{v}_h$$

 \rightarrow Solved by an iterative algorithm (NIPALS)

 \rightarrow Further pairs of components obtained after deflation of X and Y

Canonical Correlation Analysis (CCA)

Maximizes the correlation between the two latent variables: $\begin{array}{c} \mathbf{u}_{h}'\mathbf{X}_{h-1}'\mathbf{Y}_{h-1}\mathbf{v}_{h} \\ \|\mathbf{u}_{h}\|_{2} = \|\mathbf{v}_{h}\|_{2} = 1 \end{array} \quad \overline{\sqrt{\mathbf{u}_{h}'\mathbf{X}'\mathbf{X}\mathbf{u}_{h}}\sqrt{\mathbf{v}_{h}'\mathbf{Y}'\mathbf{Y}\mathbf{v}_{h}}} \\ \text{Numerical issues: dual formulation of CCA: Kernel CCA (KCCA)} \end{array}$

L2 regularised CCA (rCCA)

Add diagonal term to intra-block scatter matrices $\mathbf{X'X} \rightarrow \mathbf{X'X} + \lambda_1 \mathbf{I} \quad \mathbf{Y'Y} \rightarrow \mathbf{Y'Y} + \lambda_2 \mathbf{I}$ Extreme case of regularisation, scatter matrices $\rightarrow \mathbf{I} \leftrightarrow rCCA \sim PLS$

L2 regularised CCA (rCCA)

- [Waaijenborg08] Elastic Net: lasso and ridge $X'X=Y'Y+\lambda I$
- [Parkhomenko09] Soft-thresholding, X'X= diag(X'X)
- [Witten09] X'X=Y'Y=I
- \rightarrow such extreme regularization on $\mathbf{X'X}$ makes CCA \sim PLS

L1 regularised PLS: sparse PLS (sPLS)

Add L1 penalisation on the SNPs weights (**u**) $\min -\mathbf{u'X'Yv} + \lambda_{1X} \|\mathbf{u}\|_1$

 $\|\mathbf{u}\|_2 = \|\mathbf{v}\|_2 = 1$

- [Chun & Keles07] (regression)

- [LeCao08]

* **Soft thresholding** within PLS iterations

Ceci Sparse PLS: NIPALS revisited

Bi-convex in (u) and (v), add soft-thresholding within the NIPALS loop

NIPALS_soft_thresholding (X, Y)

 $\mathbf{X}_0 = \mathbf{X}, \mathbf{Y}_0 = \mathbf{Y}$

Iterate over components (h in 0...H):

- 1. Initialize \mathbf{u} and \mathbf{v} using for instance the first pair of singular vectors of the matrix $\mathbf{X}'\mathbf{Y}$ and normalize them.
- 2. Until convergence of ${\bf u}$ and ${\bf v}:$
 - (a) For fixed \mathbf{v} , find $\widehat{\mathbf{u}} = \arg \min_{\|\mathbf{u}\|_2=1} \mathbf{u}' \mathbf{X}' \mathbf{Y} \mathbf{v} + \lambda_{\mathbf{1}X} \|\mathbf{u}\|_1$
 - $\widehat{\mathbf{u}} = g_{\lambda_{1X}}(\mathbf{X}'\mathbf{Y}\mathbf{v}); \quad \mathbf{u} = \widehat{\mathbf{u}}/\|\widehat{\mathbf{u}}\|_2$ Where $g_{\lambda}(y) = \operatorname{sign}(y)(|y| - \lambda)_+$ is the soft-thresholding function.

(b) For fixed **u**, find $\widehat{\mathbf{v}} = \arg \min_{\|\mathbf{v}\|_2=1} - \mathbf{u}' \mathbf{X}' \mathbf{Y} \mathbf{v}$

•
$$\widehat{\mathbf{v}} = \mathbf{Y}' \mathbf{X} \mathbf{u}; \quad \mathbf{v} = \widehat{\mathbf{v}} / \|\widehat{\mathbf{v}}\|_2$$

3. Compute latent variables, loadings and deflation

•
$$\mathbf{x}^* = \mathbf{X}_h \mathbf{u};$$
 $\mathbf{x}_{load} = \mathbf{X}'_h \mathbf{x}^* / \|\mathbf{x}^*\|;$ $\mathbf{X}_{h+1} = \mathbf{X}_h - \mathbf{x}^* \mathbf{x}'_{load}$

• $\mathbf{y}^* = \mathbf{Y}_h \mathbf{v};$ $\mathbf{y}_{load} = \mathbf{Y}'_h \mathbf{y}^* / \|\mathbf{y}^*\|;$ $\mathbf{Y}_{h+1} = \mathbf{Y}_h - \mathbf{y}^* \mathbf{y}'_{load}$

return (x*, y*)

Ceci Dimension reduction

- We are interested in inter-blocks correlation \rightarrow CCA
- However CCA overfitt: poor estimation of intra-bloc "variance" (scatter) matrix
- Sparse PLS show promising results on simulated but failed on experiential data
- Add dimension reduction to remove unwilling intra-bloc variance?
- → PCA
- → Feature selection based on filtering

f leur st

Results on simulated dataset

1 eurs,

Comparison of penalisation strategies

SPLS: sparse (L1 regularised) SPLS rkCCA: L2 regularised kernelized CCA

→ Sparse PLS outperformed other methods

E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

Ceci Results on simulated dataset

Comparison of dimension reduction strategies

MULM: Massive Univariate Linear Model PC = PCA, f = filter fsPLS = filter + sparse PLS

→ Combined filter + sparse PLS outperformed other methods

⊖⊖r®Spi∩ E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

CECI Results on experimental dataset

Classical univariate analysis

→ no significant SNP/phenotype associations after correction for multiple comparisons

Multivariate methods

→ Average out-of-sample correlation between latent variables:

PLS	-0.09
Sparse PLS	0.19
Filtering + Sparse PLS	0.43*

* **significant** p-value (p<0.05), computed with permutation correction for the multiple experiments using maxT

→ Gain in sensitivity compared to univariate analysis → Both filtering and sparsity seem necessary

Results: Weights assigned to selected phenotypes

 $\square = \bigcup \otimes S \cap \square$ E. Duchesnay, I²BM/NeuroSpin MLNI Workshop, Marseille, 2011

NeurS

Thanks

LNAO & Genim program @ NeuroSpin

- Edith Le floch
- Vincent Frouin
- Bertrand Thirion
- JB Poline
- Alexis Barbot
- Denis Rivière

Unicog @ NeuroSpin

- Philippe Pinel
- Stanislas Dehaene

Supelec

- Arthur Tenenhaus
- Laura Trinchera

St-Anne (AP-HP, Descartes)

- Arnaud Cachia

Necker (INSERM, CEA)

- Monica Zibovicius