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Nonlinearity of Shapes

According to David Mumford (Fields Medal,
1974):

“Shapes are the ultimate non-linear
sort of thing”

Relative shapes can not be added and
subtracted (ie, they are nonlinear). Instead,
deformations should combined by composing
them together.
Deformations that are smooth and invertible
are known as diffeomorphisms, and form a
mathematical group.
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Linear Methods for Data on Manifolds

Dealing with
non-
Euclidean
geometry.
Conceptualise
curved
spaces as
manifolds
embedded in
higher
dimensions.

Beg, MF & Khan, A. Computing an average anatomical atlas using LDDMM and geodesic shooting. 3rd IEEE
International Symposium on Biomedical Imaging: Nano to Macro, 2006. pp 1116–1119 (2006).
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Large Deformations

We can consider a large deformation as the composition of a series
of small deformations:

ϕ1 =
(
Id + vtN−1

)
◦
(
Id + vtN−2

)
◦ ... ◦ (Id + vt1) ◦ (Id + v0)

The inverse of the deformation can be computed from:

ϑ1 = (Id− v0) ◦ (Id− vt1) ◦ ... ◦
(
Id− vtN−2

)
◦
(
Id− vtN−1

)
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Large Deformations

By modelling the trajectories as piecewise linear, distances can be
computed by adding the distances from the small deformations:

d =
1

N

N−1∑
n=0

||Lvtn ||

If N approaches infinity (and we use small deformations of
Id + 1

N vt), the evolution of a deformation may be conceptualised
as integrating the following equation:

dϕ

dt
= vt(ϕ)

Geodesic distances (from zero) are then measured by:

d =

∫ 1

t=0
||Lvt ||dt
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LDDMM

Large Deformation Diffeomorphic Metric Mapping is an image
registration algorithm that minimises the following:

E =
1

2

∫ 1

t=0
||Lvt ||2dt +

1

2σ2
||f − µ

(
ϕ−1

1

)
||2

where ϕ0 = Id,
dϕ

dt
= vt (ϕt)

The first term minimises the squared distance measure of the
deformations, whereas the second term simply minimises the
difference between the warped template and the individual scan.
The objective is to estimate a series of velocity fields (vt).
Beg, MF, Miller, MI, Trouvé, A & Younes, L. Computing large deformation metric mappings via geodesic flows of
diffeomorphisms. International Journal of Computer Vision 61(2):139–157 (2005).
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Change of Variables

When we warp images, we should usually account for
expansion/contraction via a change of variables.∫

x∈ϕ(Ω)
f (x)dx =

∫
x∈Ω

f (ϕ(x)) det |(Dϕ)(x)|dx

where (Dϕ)(x) means the Jacobian of ϕ at x.
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LDDMM
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The matching term of the objective function is:

1

2σ2

∫
x∈Ω

(f ◦ x− µ ◦ϕ−1
1 ◦ x)2dx

This may be re-written (including a change of variables) as:

1

2σ2

∫
x∈Ω

det |D(ϕ1 ◦ϕ−1
t ) ◦ x|(f ◦ϕ1 ◦ϕ−1

t ◦ x− µ ◦ϕ−1
t ◦ x)2dx

This allows the derivatives of the matching term to be computed
at any time point.
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Euler-Lagrange Equations

At the solution, the derivatives of the objective function are zero,
which means that the velocity at any time point is given by:

L†Lvt =
1

σ2
det |D(ϕ1 ◦ϕ−1

t )|(∇(µ ◦ϕ−1
t ))(µ ◦ϕ−1

t − f ◦ϕ1 ◦ϕ−1
t )

If we introduce something that we’ll call initial momentum:

u0 = L†Lv0 =
1

σ2
det |Dϕ1|(∇µ)(µ− f ◦ϕ1)

we see that the velocity at any time point is determined by the
initial momentum (or velocity), according to:

vt =
(
L†L
)−1 (

det |Dϕ−1
t |(Dϕ−1

t )T (u0 ◦ϕ−1
t )
)
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Geodesic Shooting

This all means that we do not need to estimate a series of velocity
fields. We just need to estimate an initial velocity (v0), from which
we compute the initial momentum by u0 = L†Lv0.
We set the deformation at time 0 to an identity transform
(ϕ0 = Id), and then evolve the following dynamical system for unit
time:

dϕ

dt
= vt(ϕt)

vt =
(
L†L
)−1 (

det |Dϕ−1
t |(Dϕ−1

t )T (u0 ◦ϕ−1
t )
)

Younes, L, Arrate, F & Miller, MI. Evolutions equations in computational anatomy. Neuroimage 45(1S1):40–50
(2009).
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Evolution

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|
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“Scalar Momentum”

Remember that

u0 =
1

σ2
det |Dϕ1|(∇µ)(µ− f ◦ϕ1)

If a population of subjects are all aligned with the same template
image, 1

σ2 (∇µ) will be the same for all subjects. Deviations from
the template are encoded by the residuals, det |Dϕ1|(µ− f ◦ϕ1).
This is a scalar field, and in principle is all that is needed (along
with the template) to reconstruct the original images.
Singh, Fletcher, Preston, Ha, King, Marron, Wiener & Joshi (2010). Multivariate Statistical Analysis of
Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures. T. Jiang et al. (Eds.):
MICCAI 2010, Part III, LNCS 6363, pp. 529–537, 2010.
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Example Images

Some example images.
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Scalar Momentum

Scalar momentum after aligning the example images to a common
template.
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Reconstructed Images

Images reconstructed using just the template and scalar
momentum.
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IXI Data

Used 550 T1w brain MRI from
IXI (Information eXtraction from
Images) dataset.
http://www.

brain-development.org/

Data from three different
hospitals in London:

Hammersmith Hospital
using a Philips 3T system

Guy’s Hospital using a
Philips 1.5T system

Institute of Psychiatry using
a GE 1.5T system

John Ashburner Computational Anatomy
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Grey and White Matter

Segmented into
GM and WM.
Approximately
aligned via
rigid-body.

Ashburner, J & Friston, KJ. Unified segmentation. NeuroImage 26(3):839–851 (2005).
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Diffeomorphic Alignment

All GM and WM were diffeomorphically aligned to their common
average-shaped template.

Ashburner, J & Friston, KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation.
NeuroImage 55(3):954–967 (2011).
Ashburner, J & Friston, KJ. Computing average shaped tissue probability templates. NeuroImage 45(2):333–341
(2009).
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Volumetric Features

A number of features
were used for pattern
recognition.
Firstly, two features
relating to relative
volumes.
Initial velocity
divergence is similar
to logarithms of
Jacobian
determinants.

Jacobian
Determinants

Initial Velocity
Divergence
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Grey Matter Features

Rigidly Registered
GM

Nonlinearly
Registered GM

Registered and
Jacobian Scaled GM
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“Scalar Momentum” Features

“Scalar momentum”
actually has two
components because
GM was matched
with GM and WM
was matched with
WM.

First Momentum
Component

Second Momentum
Component
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Age Regression

Linear Gaussian Process Regression to predict subject ages.
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Rasmussen, CE & Williams, CKI. Gaussian processes for machine learning. Springer (2006).
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Sex Classification

Linear Gaussian Process Classification (EP) to predict sexes.
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Rasmussen, CE & Williams, CKI. Gaussian processes for machine learning. Springer (2006).
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Sex Classification

Linear SVM versus Gaussian Process Classification (EP).

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Accuracy

SVM

G
P

 C
la

s
s
if
ie

r

 

 

Jacobians

Divergences

Rigid GM

Unmodulated GM

Modulated GM

Scalar Momentum

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

AUC

SVM

G
P

 C
la

s
s
if
ie

r

 

 

Jacobians

Divergences

Rigid GM

Unmodulated GM

Modulated GM

Scalar Momentum

John Ashburner Computational Anatomy



Theory
Examples

Data
Features
Results

Predictive Accuracies

Age
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Conclusions

Scalar momentum (with about 10mm smoothing) appears to
be a useful feature set.

Jacobian-scaled warped GM is surprisingly poor.

Amount of spatial smoothing makes a big difference.

Further dependencies on the details of the registration still
need exploring.
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